Name.....

B. Sc. DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTR - 6: MATHEMATICS (CORE COURCE)

COURSE: U6CRMAT9 - U6CRCMT7, REAL ANALYSIS

(For Regular - 2014 Admission)

Time: Three Hours

Max. Marks: 75

PART - A

Answer **all** questions. Each question has 1 mark

- 1. Show that $\sum_{n=1}^{n-1}$ is not convergent
- 2. Show that the series $\sum (-1)^{n-1}$ oscillates
- 3. State Cauchy's Root test

Reg. No.....

- 4. Discuss the continuity of $f(x)^{=} \frac{x-|x|}{x}$ if $x\neq 0$ and f(x)=2 if x=0 at x=0
- 5. State intermediate value theorem
- 6. Define upper integral of a bounded real valued function on [a, b]
- 7 For an integer value i such that $0 \le i \le 5$ let $x_i = \frac{i+i^2}{30}$ define $P = \{x_i : 0 \le i \le 5\}$ Find norm of P
- 8. Give an example of a function which is not Riemann integrable on a finite interval [*a*, *b*]
- 9. Define Uniform Convergence of a sequence of functions $\{f_n\}$

10. Show that $\cos x + \frac{\cos 2x}{2^2} + \frac{\cos 3x}{3^2} + \dots$ converges uniformly

 $(1 \times 10 = 10)$

PART - B

Answer **any eight** questions. Each question has 2 marks.

- 11. If $\sum u_n$ converges show that $\lim_{n \to \infty} u_n = 0$
- 12. Investigate the behavior of the series whose n^{th} term is $Sin(\hat{n})$
- 13. Show that every absolutely convergent series is convergent
- 14. Prove that $f(x) = \frac{\sin 2x}{x}$ if $x \neq 0$ and f(x) = 0 if x = 0 has a removable discontinuity at x = 0
- 15. Prove that a function which is derivable at a point is necessarily continuous at that point
- 16. Show that the constant function is integrable
- 17. Give an example of a function f such that $\int_a^b |f| dx$ exists, but f is not integrable.
- 18. If $f: \lceil a, b \rceil \to \mathbb{R}$ be continuous and bounded with $f(x) \ge 0$ for all x in [a, b] then show that $\int_a^b f(x) \ge 0$
- 19. Show that $\{f_n\}$ where $f_n^{(x)} = \frac{1}{x+n}$ is uniformly convergent in [0, b]; b>0
- 20.Show that the sequence $\{f_n\}$ where $f_n(x) = nx e^{-nx^2}$; $x \ge 0$ is not uniformly convergent on [0, k]; k > 0

 $(2 \times 8 = 16)$

PART - C

Answer **any five**. Each question has 5marks.

- 21. Examine the convergence of the series $\sum_{n=1}^{\infty} \sqrt{\frac{n}{n+1}} \mathbf{x}^n$
- 22. Define absolute convergence of a series $\sum u_n$. Also prove that the binomial series

 $1+nx+\frac{n(n-1)}{1.2}x^2+\dots$ converges absolutely when |x| < 1, n being a rational number

- 23. If a function is continuous on a closed interval show that it is bounded therein
- 24. Define Uniformly continuous functions. Prove that Uniformly continuous functions are continuous in that interval
- 25. Show that 3x+1 is Reimann integrable in [1,2]
- 26. If f_1 and f_2 are two bounded and integrable functions on [a, b] prove that $f = f_1+f_2$ is also integrable on [a, b]
- 27. State and prove Cauchy's criterion for Uniform convergence

(5 x 5 = 25)

PART - D

Answer any two. Each question has 12marks.

28. (a) Prove that the positive term geometric series $1+r+r^2+r^3+...$ is convergent for r <

1 and diverges for r > 1

$$\frac{n^{n^2}}{(n^2)^{n^2}}$$

- (b)Test for convergence $\sum u_n$ where $u_n = \frac{1}{(n+1)^{n^2}}$
- 29. (a) Prove that a function f defined on an interval I is continuous at a point c $\in I$ iff for very

sequence $\{c_n\}$ in I converging to c ,and $\lim_{n \to \infty} f(c_n) = f(c)$

- 30. (a) If f is bounded and integrable on [a, b] prove that f² is also integrable
 - (b) Show that $f(x) = \frac{1}{2^n}$ where $\frac{1}{2^{n+1}} < x < \frac{1}{2^n}$ (n= 0, 1, 2,.....) such that f(0) = 0 is integrable on [0,1]
- 31. (a) State and prove Weierstrass' M-test

(c) Show that the series $\sum_{1}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1}$ is uniformly convergent in every interval [a, b]

 $(12 \times 2 = 24)$
