B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 5: CORE COURSE FOR B. SC MATHEMATICS COURSE: U5CRMAT7 - ABSTRACT ALGEBRA

Time: Three Hours
Max Marks: 75

PART - A

Answer all questions. Each question carries 1 mark.

1. On Q^{+}define $\mathrm{a}^{*} \mathrm{~b}=\frac{a b}{2}$. Find the inverse of a .
2. What is the number of binary operations on a set having 3 elements?
3. What is the order of $\sigma=(4,5)(2,3,7)$?
4. Find the number of generators of the cyclic group Z_{8}.
5. Give an example of a finite group which is not cyclic.
6. What is the order of $\frac{Z_{6}}{i 3>i 6}$
7. Find all units in the ring Z .
8. Find all divisors of zero in the ring Z_{12}.
9. What is the characteristic of the ring $Z \times Z$.
10. Q is an ideal in R. Say True or False.

PART - B

Answer any Eight. Each question carries 2 marks.
11. Let G be a group such that $\mathrm{a}^{2}=e$ for all a in G . Show that ZG is abelian.
12. Write all subgroups of the group Z_{4}.
13. Find the product of cycles $(1,3,2,7)$ and $(4,8,6)$ that are permutations of ($1,2,3,4,5,6,7,8$).
14. Find the number of elements in the cyclic subgroup of $z_{4^{2}}$ generated by 30 .
15. Show that every cyclic group is abelian.
16. Prove that factor group of an abelian group is abelian.
17. If R is a ring with additive identity O then for $a \in R$. Prove that $0 . a=a .0=0$.
18. Solve the equation $x^{2}-5 x+6=0$ in z_{12}.
19. Find the characteristic of $z_{6} \times z_{15}$
20. If R is a ring with unity and N is an ideal of R containing a unit. Show that $N=R$.

PART - C

Answer any Five. Each question carries 5 marks.
21. Prove that the identity element and inverse of each element are unique in a group.
22. Prove that every permutation of a finite set is a product of disjoint cycles.
23. Prove that subgroup of a cyclic group is cyclic.
24. Prove that an infinite cyclic group is isomorphic to the group Z of integers under addition.
25. In z_{n} prove that the divisors of 0 are precisely, those elements which are not relatively prime to n.
26. Prove that every finite integral domain is a field.
27. If I_{1} and I_{2} are two ideals of a ring R. Then prove that $I, \cap I_{2}$ is an ideal of R.

PART - D

Answer any Two. Each question carries 12 marks.
28. a) Let A be a non-empty set. Let S_{A} be the collection of all permutations on
A. Then prove that S_{A} is a group under permutation multiplication.
b) For $n \geq 2$. Prove that the number of even permutations in S_{n} is same as the number of odd permutations.
29. State and prove Cayley's theorem.
30. State and prove fundamental homomorphism theorem.

31 a) If R is a ring with unity 1 . Then prove that R has characteristic $n>0$ if and only if n is
the least positive integer such that $n .1=0$.
b) Define left ideal of a ring. Find a sub ring of the ring $z \times z$ that is not an ideal of $z \times z$.

