B.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 5: MATHEMATICS

COURSE: **U5CRMAT6, U5CRCMT6 - DIFFERENTIAL EQUATIONS** (Common for BSc. Mathematics and Computer Applications)

Time: Three Hours Max. Marks: 75

Part - A (Answer all questions)

[Each question carries 1mark]

1.Test for the exactness of the differential equation $\frac{y}{x^2}dx + \left(y - \frac{1}{x}\right)dy = 0$

2. Which substitution transforms the differential equation

$$2x^2y\frac{dy}{dx} = \tan(x^2y^2) - 2xy^2$$
 into a variable separable equation.

3.Find an integrating factor for the differential equation $\sin 2x \frac{dy}{dx} = y + tanx$

4. Find the wronstian of the solutions $f_1(x) = \cos \omega x$, $f_2(x) = \sin \omega x$ Of the differential equation $y'' + \omega^2 x = 0$

5.Roots of the auxillary equation corresponding to a third order linear differential equation with

constant coefficients are $1{,}10i \land -10i$ write the general solution.

6.Reduce $x^2 \frac{d^2 y}{dx^2} - 3x \frac{dy}{dx} + 3y = 0$ to a differential equation with constant coefficients.

7. Find the singular points of the differential equation

$$x^{2}(x-2)^{2}y''+2(x-2)y'+(x+1)y=0$$

8.Write the Bessel's equation of order p.

9.Obtain the partial differential equation associated with the family of surfaces $z=\dot{\iota}+a)(y^2+b\dot{\iota}$

10. Write the two dimensional Laplace's equation.

 $(1 \times 10 = 10)$

Part - B (Answer Eight questions)

[Each question carries 2 marks]

11. Solve the differential equation
$$\frac{(2S-1)}{t}$$
ds + $(\frac{S-S^2}{t^2})$ dt = 0

12. Examine whether the differential equation

$$y + \sqrt{x^2 + y^2} i dx - xdy = 0$$
 is homogeneous \vee not

13. Solve the differential equation. $\frac{dr}{d\theta} + rtan\theta i cos\theta$.

14. Solve the differential equation

$$\frac{d^2y}{dx^2} 3 \frac{d^2y}{dx^2} - \frac{dy}{dx} + 3y = 0$$

15. Find the general solution of the differential equation

$$\frac{d^2y}{dx^2} + 2\frac{dy}{dx} + 4y = \cos 4x$$

16. Solve the differential equation

$$4x^2 \frac{d^2y}{dx^2} - 4x \frac{dy}{dx} + 3y = 0$$

17. Locate and classify the singular points of the differential equation

$$(x^2-3x)\frac{d^2y}{dx^2}+(x+2)\frac{dy}{dx}+y=0$$

- **18.** Prove that $\frac{d}{dx}(xJ\dot{c}\dot{c}1(x))=xJ_0(x)\dot{c}$
- **19.** Solve $\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)z}$
- **20.** Form the partial differential equation by eliminating the arbitrary function from $z=xy+f(x^2+y^2)$

$$(2 \times 8 = 16)$$

Part - C (Answer Five questions) [Each question carries 5 marks]

- **21.** Solve $2xy \frac{dy}{dx} y^2 + x^2 = 0$
- **22.** Solve $\frac{dy}{dx} + x\sin 2y = x^3 \cos^2 y$
- 23. Solve the initial value problem

$$\frac{d^2y}{dx^2} - 2\frac{dy}{dx} - 3y = 2e^x - 10\sin x, \ y(0) = 2, \ y'(0) = 4.$$

24. Find power series solutions in powers of x of the differential equation

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$$

25. Use the operator method to solve the following system of equations

$$\frac{dx}{dt} + \frac{dy}{dt} - 2x - 2y = e^t, \frac{dx}{dt} + \frac{dy}{dt} - y = e^{4t}$$

26. Solve the differential equation

$$\frac{d^2y}{dx^2} + y = \sec x$$

27. Find the general solution of the linear partial differential equation $y^2 p - xyq = x(z-2y)$

$$(5 \times 5 = 25)$$

[Each question carries 12 marks]

28. Solve
$$\frac{dy}{dx} = \frac{x+2y-3}{2x+y-3}$$

29. Find the general solution of the equation

$$y'' + 2y' + y = e^{-x} \log x$$

30. Use method of Frobenius to find the general solution of the differential equation

$$2x^2 \frac{d^2y}{dx^2} + x \frac{dy}{dx} + (x^2 - 3iy) = 0$$

31. (a) Solve the partial differential equation

$$u_{xx} - 4 = 0$$

(b) Find the general integral of the linear partial differential equation

(
$$x^2$$
 - yz) p + (y^2 - z x) q = z^2 - xy

 $(12 \times 2 = 24)$
