B.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 5: MATHEMATICS (CORE COURSE) COURSE: U5CRMAT5, U5CRCMT5 - MATHEMATICAL ANALYSIS

(Common for B Sc Mathematics \& B Sc Computer Application)
Time: Three Hours
Max. Marks: 75

PART-A

(Answer all questions. Each question carriers 1 mark)

1. Find the Supremum of $\left\{1+\frac{(-1)^{n}}{n} ; n \in N\right\}$
2. State order completeness in R
3. Give an example of an open set which is not an interval
4. Obtain the derived set of $\{x: 1<x<2\}$
5. Define a perfect set \& give an example
6. Give an example of a bounded sequence
7. Write the limit points of the sequence $\left\{1+(-1)^{n}\right\} ; \mathrm{n} \in N$
8. Give an example of a monotonic increasing sequence which is bounded above
9. Show that for any complex number $z ; \operatorname{Re}(i z)=-\operatorname{lm} z$
10. Write $\frac{4+i}{2-3 i}$ in the form $a+i b$
$(1 \times 10=10)$

PART-B

(Answer any eight questions. Each question carriers 2 marks)
11. Prove that the greatest number of a set if it exists is the supremum of the set
12. State Dedekind's property of real numbers
13. If $M \& N$ are nbds of a point x then show that $M \cap N$ is also a nbd of x
14. If $S \& T$ are subsets of R show that $S \subseteq T \Longrightarrow S^{\prime} \subseteq T^{\prime}$
15. S is a set such that $T=R-S$ is open ,show that S is closed
16. Prove that the set of all odd positive integers is countabily infinite
17. Show that every convergence sequence is bounded
18. Show that $\left\{S_{n}\right\}$ where $\mathrm{S}_{\mathrm{n}}=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\ldots \ldots \ldots . . .$. cannot converge
19. Sketch the points determined by $\operatorname{Re}(z-i)=2$
20. Find the principal argument of $z=\frac{-2}{1+i \sqrt{3}}$

PART-C
(Answer any five questions. Each question carriers 5 marks)
21. Prove that the order completeness property of real numbers implies Dedekind's property
22. Prove that the interior of a set S is the largest open sub set of S
23. Prove that the set of all rational numbers in $[0,1]$ is countable
24. Prove that every bounded sequence with a unique limit point is convergent
25. State \& prove Sandwich theorem 1
26. Show that the sequence $\left\{S_{n}\right\}$ where $\mathrm{S}_{\mathrm{n}}=\frac{1}{1!}+\frac{1}{2!}+\frac{1}{3!}+\cdots \cdots \cdots \bar{n}^{n}$, is convergent
27. If c is any $n^{\text {th }}$ root of unity other than unity itself ,then show that $1+c+c^{2}+c^{3}+\ldots . c^{n-1}=0$

$$
(5 \times 5=25)
$$

PART-D
(Answer any two questions. Each question carries 12marks)
28. Prove that the set of rational numbers is not order complete
29. State \& prove Bolzano Weierstrass theorem (for sets)
30. Show that the sequence $\left\{r^{n}\right\}$ converges iff $-1<r \leq 1$
31. (a) Show that $\lim _{n \rightarrow \infty}\left[\frac{1}{\sqrt{n^{2}+1}}+\frac{1}{\sqrt{n^{2}+2}}+\cdots \ldots \ldots . .+\frac{1}{\sqrt{n^{2}+n}}\right]=1$
(b) Show that the sequence $\left\{a_{n}{ }^{\frac{1}{n}}\right\}$ where $\mathrm{a}_{\mathrm{n}}=\frac{(3 n)!}{(n!)^{3}}$ converges
$(12 \times 2=24)$

