Reg. No..... Name.....

B SC DEGREE END SEMESTER EXAMINATION MARCH 2017 SEMESTER - 6: MATHEMATICS (OPEN CORE) COURSE: U60RMAT13: OPERATIONS RESEARCH

(For Regular - 2014 Admission)

Time: Three Hours

Max. Marks: 75

PART A

Answer **all** questions. Each question carries 1 mark.

- 1. Is the set of vectors {[1,0,0], [0,1,0], [0,0,1]} a basis for R^3 ? Justify your answer.
- 2. Define a supporting hyper plane.
- 3. Give geometrical interpretation of Euclidean norm on R².
- 4. What are artificial variables?
- 5. Write the general form of a linear programming problem.
- 6. Discuss degeneracy in a transportation problem.
- 7. What is an assignment problem?
- 8. Define the term queue discipline.
- 9. Define steady state and transient state of a queuing system
- 10.Define a pure death process. Give an example.

 $(1 \times 10 = 10)$

PART B

Answer **any eight** questions. Each question carries 2 marks.

- 11. Give an example of a hyper plane in R^2 and R^3 .
- 12. Draw the convex hull of the set of points, $\{(1,2), (2,3), (3,1)\}$
- 13. State Cauchy Schwartz Inequality
- 14. Write the dual of the following LPP.

 $Min x_1 + x_2 subject \ \dot{c} \ 2x_1 + x_2 \ge 8, \ 3x_1 + 7 \ x_2 \ge 21, \ x_1, \ x_2 \ge 0$

- 15. Discuss degeneracy in a Linear Programming Problem.
- 16. Define a triangular basis.
- 17. What is an assignment problem?
- 18. Discuss main Static queue disciplines.
- 19. Give any two relationship among the various performance measures of a queuing system.
- 20.State the main assumptions in a pure birth process.

 $(2 \times 8 = 16)$

PART C

Answer **any five** questions. Each question carries 5 marks.

- 21. Define convex linear combination of two points and *n* points.
- 22. Define δ neighbourhood of an *n* dimensional vector in Eⁿ. Draw the δ neighbourhood of point (1, 2) of E², where δ = 2.

- 23. Show that if the set S_F of feasible solutions, if not empty, is a closed convex set bounded from below and so has at least one vertex.
- 24. Solve the following assignment problem:

	1	2	3	4	5
A	2	9	2	7	1
В	6	8	7	6	1
C	4	6	5	3	1
D	4	2	7	3	1
E	5	3	9	5	1

- 25. Explain North West Corner rule to obtain initial basic feasible solution of a transportation problem.
- 26. State and prove Markovian property of inter arrival times.
- 27. Discuss different arrival behaviour of customers in a queuing system. $(5 \times 5 = 25)$

PART D

Answer **any two** questions. Each question carries 12 marks.

28. Solve the following LPP using simplex method.

Minimize $Z = x_1 - 3x_2 + 2x_3$, *subject* $i \cdot 3x_1 - x_2 + 2x_3 \le 7$, $-2x_1 + 4x_2 \le 12$, $-4x_1 + 3x_2 + 8x_3 \le 10$, $x_1, x_2, x_3 \ge 0$

- **29.** Use Big M Method to solve *Maximize* $Z=3x_1-x_2$, *subject* $i 2x_1+x_2 \ge 2$, $x_1+3x_2 \le 2, x_2 \le 4, x_1, x_2 \ge 0$
- 30. Solve the following transportation problem for optimal solution.

	D1	D2	D3	D 4	
S 1	19	30	50	1 0	7
S2	70	30	40	6 0	9
S3	40	8	70	2 0	18
	5	8	7	1 4	

31.Explain the main characteristics of a queuing system.

 $(12 \times 2 = 24)$
