PART A

Answer all questions. Each question carries 1 mark.
1 . Is the set of vectors $\{[1,0,0],[0,1,0],[0,0,1]\}$ a basis for R^{3} ? Justify your answer.
2. Define a supporting hyper plane.
3. Give geometrical interpretation of Euclidean norm on R^{2}.
4. What are artificial variables?
5. Write the general form of a linear programming problem.
6. Discuss degeneracy in a transportation problem.
7. What is an assignment problem?
8. Define the term queue discipline.
9. Define steady state and transient state of a queuing system
10. Define a pure death process. Give an example.

PART B

Answer any eight questions. Each question carries 2 marks.
11. Give an example of a hyper plane in R^{2} and R^{3}.
12. Draw the convex hull of the set of points, $\{(1,2),(2,3),(3,1)\}$
13. State Cauchy - Schwartz Inequality
14. Write the dual of the following LPP.
$\operatorname{Min} x_{1}+x_{2}$ subject $\left\langle 2 x_{1}+x_{2} \geq 8,3 x_{1}+7 x_{2} \geq 21, x_{1}, x_{2} \geq 0\right.$
15. Discuss degeneracy in a Linear Programming Problem.
16. Define a triangular basis.
17. What is an assignment problem?
18. Discuss main Static queue disciplines.
19. Give any two relationship among the various performance measures of a queuing system.
20.State the main assumptions in a pure birth process.
$(2 \times 8=16)$

PART C

Answer any five questions. Each question carries 5 marks.
21. Define convex linear combination of two points and n points.
22. Define δ - neighbourhood of an n dimensional vector in E^{n}. Draw the δ neighbourhood of point $(1,2)$ of E^{2}, where $\delta=2$.
23. Show that if the set S_{F} of feasible solutions, if not empty, is a closed convex set bounded from below and so has at least one vertex.
24. Solve the following assignment problem:

	1	2	3	4	5
	1	2	9	2	7
B	6	8	7	6	1
C	4	6	5	3	1
D	4	2	7	3	1
E	5	3	9	5	1

25. Explain North - West Corner rule to obtain initial basic feasible solution of a transportation problem.
26. State and prove Markovian property of inter arrival times.
27. Discuss different arrival behaviour of customers in a queuing system.
($5 \times 5=25$)

PART D

Answer any two questions. Each question carries 12 marks.
28. Solve the following LPP using simplex method.

Minimize $Z=x_{1}-3 x_{2}+2 x_{3}$, subject i $3 x_{1}-x_{2}+2 x_{3} \leq 7,-2 x_{1}+4 x_{2} \leq 12,-4 x_{1}+3 x_{2}+8 x_{3} \leq 10, x_{1}, x_{2}, x_{3} \geq 0$
29. Use Big M Method to solve Maximize $Z=3 x_{1}-x_{2}$, subject $i 2 x_{1}+x_{2} \geq 2$,

$$
x_{1}+3 x_{2} \leq 2, x_{2} \leq 4, x_{1}, x_{2} \geq 0
$$

30. Solve the following transportation problem for optimal solution.

31. Explain the main characteristics of a queuing system.
