COURSE: U4CPMAT04, FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

Time: Three Hours

Max. Marks: 75

PART A

(Answer all questions. Each question carries 1 mark)

- 1. What is the fundamental period of $\sin 2x$?
- 2. Is $e^{-|x|} \pi < x < \pi$ an odd or even function. Why?
- 3. Write Legendre's differential equation.
- 4. What are the direction cosines normal to the surface z=f(x,y) at the point (x, y, z).

5. What is the order of the differential equation $\left(\frac{\partial \theta}{\partial x}\right)^3 + \frac{\partial \theta}{\partial t} = 0$.

- 6. Give an example of a first order nonlinear partial differential equation.
- 7. Find the relative error of π if the approximate value is 3.142857 and its true value 3.1415926.
- 8. Give an example of an algebraic function.
- 9. Define a semi group.
- 10. What is the order of the symmetric group S_4 .

 $(1 \times 10 = 10)$

PART B

(Answer any eight questions. Each question carries 2 marks)

- 11. Sketch the graph of the function $f(x) = \begin{cases} -1, -\pi < x < 0 \\ 1, 0 < x < \pi \end{cases}$, $f(x+2\pi) = f(x)$.
- 12. Write the expressions for $P_0(x)$, $P_2(x)$ and $P_4(x)$.
- 13. Show that $\int v + 1 = v \int v \dot{i} \dot{i}$ where vis a nonnegative real number.
- 14. Eliminate the arbitrary constants a and b from z=ax+by+ab and form a partial differential equation.
- 15. Form the differential equation by eliminating the arbitrary function ffrom $z = f(x^2 - y^2)$.
- 16. If $u=3v^7-6v$, find the percentage error in u at v=1, if the error in v is 0.05.
- 17. Write down the computational steps in the bisection method for finding the root of the equation f(x)=0.
- 18. Use the method of iteration to find a real root of $2x \log_{10} x = 7$
- 19. Let G be a group, a ε G, Then show that $H = \{a^n : n \in Z\}$ is a subgroup of G.
- 20. Describe all ring homomorphism from Z into Z.

 $(2 \times 8 = 16)$

PART C

(Answer any **five** questions. Each question carries 5 marks)

21. A sinusoidal voltage $E sin\omega t$, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting function

$$u(t) = \begin{cases} 0 \text{ if } -L < x < 0 \\ E \sin \omega t \text{ if } 0 < t < L \end{cases} \quad p = 2L = \frac{2\pi}{\omega}, \ L = \frac{\pi}{\omega}.$$

22. Find series solution of the equation $(1-x\dot{\iota}\dot{\iota}^2)y'-2xy'+2y=0\dot{\iota}$.

23. Find the integral curves of
$$\frac{dx}{cy-bz} = \frac{dy}{az-cx} = \frac{dz}{bx-ay}$$
.
24. Solve $(y+zx)p - (x+yz)q = x^2 - y^2$

- 24. Solve $(y+zx)p-(x+yz)q=x^2-y^2$ 25. Use the method of false position to obtain a root of $x^3-4x+1=0$.
- 26. Obtain a root correct to 5 decimal places for $2x^3-3x-6=0$ using the Newton Raphson method.
- 27.Check whether the set { (1, 0, 1), (2, 1, 4), (0, 0, 1)} is a basis for R^3 over R?

 $(5 \times 5 = 25)$

Part D

(Answer any **two** questions. Each question carries 12 marks)

28. a) Find two half range expansions of the functions f(x)=x, 0 < x < 2.

b) Prove that
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x} sinx}$$
.

29.

a) Find the integral curves of
$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{dz}{(x+y)^2}$$

b) Find the general solution of $p_x(z-2y^2)=(z-qy)(z^2-y^2-2x^3)$

- 30. a) Find the real roots of the equation 2x = cosx+3 correct to 3 decimal places using iterative method.
 - b) Find the real roots of the equation $x^3-6x^2+11x-6=0$ using the quotient-difference method.
- 31. a) Show that a finite dimensional vector space has a basis.
 - b) State and prove Cayley's theorem

 $(12 \times 2 = 24)$

```
******
```