BSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4, COMPLEMENTARY COURSE FOR BSC PHYSICS AND CHEMISTRY

COURSE: U4CPMAT04, FOURIER SERIES, DIFFERENTIAL EQUATIONS, NUMERICAL ANALYSIS AND ABSTRACT ALGEBRA

Time: Three Hours
Max. Marks: 75

PART A

(Answer all questions. Each question carries 1 mark)

1. What is the fundamental period of $\sin 2 x$?
2. Is $e^{-|x|},-\pi<x<\pi$ an odd or even function. Why?
3. Write Legendre's differential equation.
4. What are the direction cosines normal to the surface $z=f(x, y)$ at the point (x, y, z).
5. What is the order of the differential equation $\left(\frac{\partial \theta}{\partial x}\right)^{3}+\frac{\partial \theta}{\partial t}=0$.
6. Give an example of a first order nonlinear partial differential equation.
7. Find the relative error of π if the approximate value is 3.142857 and its true value 3.1415926 .
8. Give an example of an algebraic function.
9. Define a semi group.
10. What is the order of the symmetric group S_{4}.

PART B

(Answer any eight questions. Each question carries 2 marks)
11. Sketch the graph of the function $f(x)=\left\{\begin{array}{c}-1,-\pi<x<0 \\ 1,0<x<\pi\end{array}, f(x+2 \pi)=f(x)\right.$.
12. Write the expressions for $\mathrm{P}_{0}(\mathrm{x}), \mathrm{P}_{2}(\mathrm{x})$ and $\mathrm{P}_{4}(\mathrm{x})$.
13. Show that $\lceil v+1=v\lceil v i i$ where vis a nonnegative real number.
14. Eliminate the arbitrary constants a and b from $z=a x+b y+a b$ and form a partial differential equation.
15. Form the differential equation by eliminating the arbitrary function f from $z=f\left(x^{2}-y^{2}\right)$.
16. If $u=3 v^{7}-6 v$, find the percentage error in u at $v=1$, if the error in v is 0.05 .
17. Write down the computational steps in the bisection method for finding the root of the equation $f(x)=0$.
18. Use the method of iteration to find a real root of $2 x-\log _{10} x=7$
19. Let G be a group, $\mathrm{a} \varepsilon \mathrm{G}$, Then show that $H=\left\{a^{n}: n \in Z\right\}$ is a subgroup of G.
20. Describe all ring homomorphism from Z into Z.

PART C

(Answer any five questions. Each question carries 5 marks)
21. A sinusoidal voltage Esinct, where t is time, is passed through a half-wave rectifier that clips the negative portion of the wave. Find the Fourier series of the resulting function
$u(t)=\left\{\begin{array}{c}0 \text { if }-L<x<0 \\ E \text { sin } \omega t \text { if } 0<t<L\end{array} \quad p=2 L=\frac{2 \pi}{\omega}, L=\frac{\pi}{\omega}\right.$.
22. Find series solution of the equation $(1-x i b 2) y^{\prime \prime}-2 x y^{\prime}+2 y=0 i$.
23. Find the integral curves of $\frac{d x}{c y-b z}=\frac{d y}{a z-c x}=\frac{d z}{b x-a y}$.
24. Solve $(y+z x) p-(x+y z) q=x^{2}-y^{2}$
25. Use the method of false position to obtain a root of $x^{3}-4 x+1=0$.
26. Obtain a root correct to 5 decimal places for $2 x^{3}-3 x-6=0$ using the Newton Raphson method.
27.Check whether the set $\{(1,0,1),(2,1,4),(0,0,1)\}$ is a basis for R^{3} over R ?

Part D

(Answer any two questions. Each question carries 12 marks)
28. a) Find two half range expansions of the functions $f(x)=x, 0<x<2$.
b) Prove that $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$.
29.
a) Find the integral curves of $\frac{d x}{x^{2}}=\frac{d y}{y^{2}}=\frac{d z}{(x+y) z}$.
b) Find the general solution of $p x\left(z-2 y^{2}\right)=(z-q y)\left(z^{2}-y^{2}-2 x^{3}\right)$
30. a) Find the real roots of the equation $2 x=\cos x+3$ correct to 3 decimal places using iterative method.
b) Find the real roots of the equation $x^{3}-6 x^{2}+11 x-6=0$ using the quotient-difference method.
31. a) Show that a finite dimensional vector space has a basis.
b) State and prove Cayley's theorem

