Reg.No
Name:
U415

BSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4:
 CORE COURSE FOR MATHS AND COMPUTER APPLICATIONS
 COURSE: U4CRMAT04-U4CRCMT04 - VECTOR CALCULUS, THEORY OF EQUATIONS AND NUMERICAL METHODS

Time: Three Hours
Max. Marks: 75

Part A

Answer all questions. Each question carries 1 mark.

1. Find the equation of a plane through ($0,2,-1$) and normal to $\mathbf{n}=3 \mathbf{i}-2 \mathbf{j} \mathbf{- k}$.
2. Find the angle between the planes $x+y=1$ and $2 x+y-2 z=2$.
3. Find the length of one turn of the helix $r(t)=\operatorname{cost} \mathbf{i}+\operatorname{sint} \mathbf{j}+t \mathbf{k}$.
4. Find the gradient of $f(x, y)=\frac{x^{2}}{4}+y^{2}$ at $(-2,1)$.
5. Check whether $y d x+x d y+4 d z$ is exact
6. Is $\mathbf{F}=12 x z^{2} \mathbf{i}-9 y z^{2} \mathbf{j}-z^{3} \mathbf{k}$ solenoidal?
7. State the fundamental theorem of algebra.
8. Find the minimum number of possible imaginary roots of $12 x^{7}-x^{4}+10 x^{3}-28=0$.
9. Give an example of a transcendental equation.
10. WriteNewton-Raphsonformula.
$(1 \times 10=10)$

Part B

Answer any eight questions. Each question carries 2 marks.
11. Find the equation of a plane through ($1,1,-1$), $(2,0,2),(0,-2,1)$.
12. Find the unit tangent vector to the curve $x=t^{2}+1, y=4 t-3, z=2 t^{2}-6 t$ at a point t .
13. Find the derivative of $f(x, y)=x^{2}+x y$ at $(1,2)$ in the direction of $\mathbf{i}+\mathbf{j}$.
14. Integrate $f(x, y, z)=x-3 y^{2}+z$ over the line segment $\quad C$ joining the origin to the point
(1, 1, 1).
15. Find the circulation of the field $F=(x-y) \quad \mathbf{i}+x \mathbf{j}$ around the circle $r(t)=(\cos t) \quad \mathbf{I}$

$$
+\boldsymbol{t} \quad \mathbf{j}, \quad 0 \leq t \leq 2 \pi .
$$

16. Check whether $F=(2 x-3) \mathbf{i}-z \mathbf{j}+\cos z \mathbf{k}$ is conservative?
17. Solve the equation $4 x^{3}-24 x^{2}+23 x+18=0$, given that the roots are in arithmetic progression
18. If α, β, γ are the roots of $x^{3}+5 x^{2}+3 x+2=0$.Find $\sum \frac{1}{\alpha}$.
19. Find a real root $x^{3}+x-1=0$ between 0 and 1 by Regula-falsi method.
20. Find an approximate root of the equation $x^{3}-9 x+1=0$ between 2 and 3 by bisection
method in four steps.
($2 \times 8=16$)

Part C
 Answer any five questions. Each question carries 5 marks.

21. Find the normal and tangential scalar components of acceleration of the motion

$$
r(t)=(\cos t+t \sin t) \quad \mathbf{i}+(\sin t-t \cos t) \quad \mathbf{j}, \mathrm{t}>0 .
$$

22. Find the tangent plane and the normal line of the surface

$$
\begin{gathered}
f(x, y, z)=x^{2}+y^{2}+z-9=0 \quad \text { at } \\
\text { the point } P_{0}(1,2,4) .
\end{gathered}
$$

23. Use Green's Theorem to evaluate the integral, where C is the square cut from the first quadrant by the lines $x=1$ and $y=1$.
24. Evaluate the integral $\iint_{S}(7 x i-z k) \cdot n d \sigma$ over the sphere $S: x^{2}+y^{2}+z^{2}=4$ by divergence
theorem.
25. Solve $24 x^{3}-14 x^{2}-63 x+45=0$ given that one root is twice another root.
26. Find the equation whose roots are 2 less than the roots of the equation

$$
x^{4}-5 x^{3}+7 x^{2}-4 x+5=0 .
$$

27. Find the root of the equation $x^{3}+x-1=0$ by iteration method near $x=1$

Part D

Answer any two questions. Each question carries 12 marks.
28. Verify Stoke's theorem for the hemisphere $x^{2}+y^{2}+z^{2}=9, z \geq 0$, whose bounding circle is

$$
x^{2}+y^{2}=9 \quad, \quad z=0 \quad \text { and the field } \mathbf{F}=y \mathbf{i}-x \mathbf{j} .
$$

29. Find the area of the surface cap cut from the hemisphere $x^{2}+y^{2}+z^{2}=2, z \geq 0$ by the
cylinder $x^{2}+y^{2}=1$.
30. Solve the equation $x^{3}-9 x+28=0$ by Cardan's method.
31. Use Newton-Raphson method to obtain a root correct to 3 decimal places for the equation
$x \sin x+\cos x=0$ near $x=3$
$(12 \times 2=24)$
