M.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 3: MATHEMATICS
 COURSE: P3MATT14- NUMBER THEORY AND CRYPTOGRAPHY
 Common for Regular (2015 Admission) \& Supplementary / Improvement (2014 Admission)

Time: Three Hours
Max. Marks: 75

Part A

Answer any Five. Each question carries 2 marks.

1. Divide (11001001) $)_{2}$ by $(100111)_{2}$
2. Define time estimate.
3. Prove that $(a+b)^{p}=a^{p}+b^{p}$ in any field of characteristic p.
4. Define the Legendre Symbol.
5. Define a hash function.
6. Define Discrete logarithm.
7. Show that 561 is a Carmichael number.
8. What is a factor base B ? What is a B-number?

$$
(2 \times 5=10)
$$

Part B

Answer any Five. Each question carries 5 marks.
9.Find an upper bound for the number of bit operations it takes to compute the binomial coefficient $\binom{n}{m}$.
10. How can you find all divisors of a natural number n ?
11. Prove that the order of any $a \in F_{q}{ }^{*}$ divides $q-1$.
12. Let $f(x)=x^{4}+x^{3}+x^{2}+1$ and $g(x)=x^{3}+1$ be polynomials in $F_{2}[x]$. Find g.c.d.(f,g) using the Euclidean algorithm for polynomials, and express the g.c.d. in the form $u(x) . f(x)+v(x) . g(x)$
13. What is a one-way function? What is G.Purdy's one-way function?
14. Explain ElGamal cryptosystem.
15. What do you mean by primality test? What is the simplest primality test?
16. Let $d=\operatorname{gcd}(k, m)$. Then prove that there are exactly d elements in the group $\left\{g, g^{2}, \ldots g^{m}=1\right\}$ which satisfy $x^{k}=1$

Part C

Answer (a) or (b) from each question. Each question carries 10 marks
17. (a) State and prove the Chinese Remainder Theorem.
(b) Show that the Euclidean algorithm always gives the greatest common divisor in a finite number of steps. Further estimate the time required to find $\operatorname{gcd}(a, b)$ for $a>b$ by the Euclidean algorithm.
18. (a) Prove that if F_{q} is a finite field of $\mathrm{q}=\mathrm{p}^{f}$ elements, then every element satisfies the equation $\mathrm{x}^{\mathrm{q}}-\mathrm{x}=0$ and that F_{q} is precisely the set of roots of that equation. Conversely prove that for every prime power $q=p^{f}$,the splitting field over F_{p} of the polynomial $x^{q}-x$ is a field of q elements.
(b) State and prove the General Law of Quadratic Reciprocity.
19. (a) Explain the RSA cryptosystem.
(b) Explain the Diffie-Hellman key exchange system
20. (a) When do you say that an odd composite number n is an Euler pseudo prime to the base b ? a strong pseudo prime to the base b ? Suppose that $\mathrm{n} \equiv 3 \bmod 4$ and then show that n is a strong pseudo prime to the base b if and only if it is an Euler pseudo prime to the base b.
(b) Factorize 4087 by rho method by taking $f(x)=x^{2}+x+1$ and $x_{0}=2$.
$(10 \times 4=40)$

