Name:....

M.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 3: MATHEMATICS COURSE: P3MATT13- DIFFERENTIAL GEOMETRY

Common for Regular (2015 Admission) & Supplementary / Improvement (2014 Admission)

Time: Three Hours

Max. Marks: 75

Part A

(Answer any five questions. Each carriers 2 marks)

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is the level set of some function $F:\mathbb{R}^{n+1}\to\mathbb{R}$
- 2. Define an n- surface in R^{n+1}
- 3. Find the speed of the parameterized curve $\alpha(t) = (\cos 3t, \sin 3t)$
- 4. Define the Gauss map
- 5. Compute $\nabla_{v} \mathbf{X}$ where $\mathbf{X} = (x_1, x_2, -x_2, x_1)$ and $\mathbf{v} = (\cos \theta, \sin \theta, -\sin \theta, \cos \theta)$
- 6. Define Weingarten map
- 7. Explain the term Normal section of an n- surface S
- 8. State Inverse function theorem for an n- surface

 $(2 \times 5 = 10)$

Part B

(Answer **any five** questions. Each carriers 5 marks)

9. Find the integral curve through P (a ,b) for the vector field $\mathbf{X}(p)$ = (P, X(P)) where X(p) = X(x₁,x₂) = (-x₂, x₁)

10. Show that the two orientations of the n- sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$ of radius r > 0 are given by $\mathbf{N_1}(P) = (P, \frac{p}{r}) A$ and $\mathbf{N_2}(p) = (p, -\frac{p}{r})$

- 11. Prove that (X + Y)' = X' + Y'
- 12. For each a, b, c, d \in R prove that the parameterized curve defined by $\alpha(t) = (\cos(at+b), \sin(at+b), ct+d)$ is a Geodesic on the cylinder $x_1^2 + x_2^2 = 1$ in R³
- 13. Find the parameterization of the plane curve and the curvature K(p)of $ax_1 + bx_2 = c$ where (a, b) $\neq 0$ oriented by $\frac{\nabla f}{\|\nabla f\|}$
- 14. Let f: U \rightarrow R; U \sqsubseteq Rⁿ⁺¹ be a smooth function. Define the differential of f, df and prove that it is a differential one-form
- 15. Find the normal curvature K(**v**) to the surface $x_1+x_2+\ldots+x_{n+1}=1$, oriented by

$$\mathbf{N} = \frac{\nabla f}{\|\nabla f\|}$$

16. Let S be a compact connected oriented surface in R^{n+1} . Prove that the Gauss Kronecker curvature K(p) is non zero for all p in S iff the second fundamental form ψ_p of S at p is definite for all p ϵ S

 $(5 \times 5 = 25)$

Part C

(Answer either part (a) or part (b). Each question carriers 10 marks)

17.(a) Let **X** be a smooth vector field on an open set $U \sqsubset R^{n+1}$ and let $p \in U$. Prove that there exists

an open interval I containing 0 and an integral curve $\alpha: I \rightarrow U$ of \boldsymbol{X} such that

- (i) $\alpha(0) = p$
- (ii) If $\beta : \overline{I} \to U$ is any other integral curve of **X** with (0) = p, then $\overline{I} \subset I$ and $\beta(t) = \alpha(t)r$ all $t \in \overline{I}$

(b) Let S be an n surface in \mathbb{R}^{n+1} , S= f¹ (c) where f :U \rightarrow R is such that $\nabla f(q) \neq 0$ for all q ϵ S. Suppose g: U \rightarrow R is a smooth function and p ϵ S is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$

18. (a) Prove that a parameterized curve α : $I \rightarrow S$ is a geodesic iff its covariant derivative ($\dot{\alpha}$)' is zero along α

(b) Let S be an n-surface in $R^{n+1},$ let p, $q\in S$,and let α be a piecewise smooth parameterized curve

from p to q. Prove that the parallel transport $\mbox{ P}_{\alpha}:S_{P}\to Sq$ along α is a vector space isomorphism

which preserves dot product

19. (a) Prove that the Weingarten map Lp is self- ad joint

(b) For each 1-form ω on U (U open in \mathbb{R}^{n+1}) prove that there exists unique functions $f_i : U \rightarrow \mathbb{R}$ ($i \in \{1, 2, \dots, n+1\}$) such that $\omega = \sum_{i=1}^{n+1} f_i d x_i$. Also show that ω is smooth iff each f_i is smooth

20.(a) Find the Gaussian curvature of $\phi(t, \theta) = (\cos\theta, \sin\theta, t)$

(b) Prove that on each compact oriented n surface S in R^{n+1} there exists a point p such that the second fundamental form is definite

 $(10 \times 4 = 40)$