Reg. No \qquad Name \qquad

M.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER - 3: MATHEMATICS
 COURSE: P3MAT11- MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS

Common for Regular (2015 Admission) \& Supplementary / Improvement (2014 Admission)
Time: Three Hours
Max. Marks: 75
PART A
(Answer FIVE questions. Each carries 2 marks.)

1. Define convolution of two real valued function f and g.
2. Define Fourier series of a periodic function f with period p.
3. Define the directional derivative of a function f at c in the direction u.
4. What do you mean by the Jacobian matrix?
5. If $f=u+i v$ is a complex valued function with a derivative at a point z in C, then $J_{f}(z)=\left|f^{\prime}(z) \| f^{\prime}(z)\right|$.
6. State mean value theorem for differentiable functions.
7. What do you meant by primitive mappings?
8. Define Stokes theorem.
$(2 \times 5=10)$

PART B

(Answer FIVE questions. Each carries 5 marks)
9. Use the Fourier integral theorem to evaluate the improper integral $\frac{2}{\pi} \int_{0}^{\infty} \frac{\sin v \cos v x}{v} \mathrm{dv}$
10. State and prove Weierstrass approximation theorem.
11. Let u and v be two real valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at an interior point c of S and that the partial derivatives satisfy the Cauchy-Riemann equations at c. Then the function $\mathrm{f}=\mathrm{u}+\mathrm{iv}$ has a derivative at c. Moreover, $f^{\prime}(\mathrm{c})=D_{1} u(\mathrm{c})+\mathrm{i} D_{1} v(\mathrm{c})$.
12. Compute the gradient vector $\nabla f(x, y)$ at those points (x, y) in R^{2} where it exists:

$$
\begin{array}{cc}
f(x, y)=x^{2} y^{2} \log \left(x^{2}+y^{2}\right) & \text { if }(x, y) \neq(0,0) \\
=0 & \text { if }(x, y) \text { i }(0,0)
\end{array}
$$

13. Consider the function $\left.f(x, y)=x y\left(x^{2}-y^{2}\right) /\left(x^{2}+y^{2}\right)\right)$ if $(x, y) \neq(0,0)=0$ if (x, y) i $(0,0)$ Show that $D_{1,2} f(x, y) \neq D_{2,1} f(x, y)$.
14. Find and classify the extreme values (if any) of the function $f(x, y)=y^{2}-x^{3}$. 15. If ω and λ are k - and m - forms, respectively, of class ϱ in E, then

$$
\mathrm{d}\left(\omega^{i} \lambda i=i\right)^{\wedge} \lambda+(-1)^{k} \omega^{i}(\mathrm{~d} \lambda i .
$$

16. For every $f \in \varrho i)$, show that $L(f)=L^{\prime}(f)$.
$(5 \times 5=25)$

PART C
 (Answer ALL questions. Each carries 10 marks.)

17. A. Let $R=(-\infty,+\infty i$.Assume that $f, g \in L(R)$, and that atleast one of f or g is continuous and bounded on R.Let h denote the convolution, $h=f * g$. Then for every real u we have

$$
\int_{-\infty}^{+\infty} h(x) e^{-i x u} \mathrm{dx}=\left(\int_{-\infty}^{+\infty} f(t) e^{-i t u} d t\right)\left(\int_{-\infty}^{+\infty} g(y) e^{-i y u} d y\right) .
$$

The integral on the left exists both as a Lebesque integral and as an improper Riemann integral.

OR

17. B. Let $\mathrm{f}: R^{2} \rightarrow R^{3}$ be defined by the equation
$f(x, y)=(\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix D f(x,y)
18. A. Assume that g is differentiable at a , with total derivative $g^{\prime}(\mathrm{a})$. Let b $=g(a)$ and assume
that f is differentiable at b , with total derivative $f^{\prime}(\mathrm{b})$. Then prove that the composite
function $h=f \circ g$ is differentiable at a , and the total derivative $h^{\prime}(\mathrm{a})$ is given by $h^{\prime}(\mathrm{a})=f^{\prime}(\mathrm{b}) \circ g^{\prime}(\mathrm{a})$, the composition of the linear functions $f^{\prime}(\mathrm{b})$ and g^{\prime} (a).

OR
18. B.
a) If $x\left(r, \theta i=r \cos \theta, y(r, \theta)=r \sin \theta\right.$, show that $\frac{\partial(x, y)}{\partial(r, \theta)}=r$.
b) If If $\mathrm{x}(\mathrm{r}, \theta, \varnothing i=r \cos \theta \sin \varnothing, y(r, \theta, \varnothing)=r \sin \theta \sin \varnothing, \mathrm{z}(r, \theta, \varnothing)=r \cos \varnothing$, show
that

$$
\frac{\partial(x, y, z)}{\partial(r, \theta, \varnothing)}=-r^{2} \sin \varnothing .
$$

19. A. Prove that if both partial derivatives $D_{r} f$ and $D_{k} f$ exists in an n-ball (c, δ i and if both are differential at c. Then $D_{r, k} f(c)=D_{k, r} f(c)$.

OR

19. B.For each of the following functions verify that the mixed partial derivatives $D_{1,2}$ fand $\quad D_{2,1} f$ are equal a) $f(x, y)=\tan \left(x^{2} / y\right), \quad y \neq 0$

$$
\text { b) } f(x, y)=x^{4}+y^{4}-4 x^{2} y^{2} \quad(x, y) \neq(0,0)
$$

20. A. Suppose F is a C -Mapping of an open subset E in R^{n} into $R^{n}, 0 \in \mathrm{E}, \mathrm{F}(0)=$ 0 , and $F^{\prime}(0)$ is invertible. Then prove that there is a neighborhood of 0 in R^{n} in which a representation $F(x)=B_{1} B_{2} \ldots \ldots B_{n-1} G_{n} \ldots . . G_{1}(x)$ is valid, where each G_{i} is a primitive C - Mapping in some neighborhood of $0 . \mathrm{G}_{1}(0)=0, \mathrm{G}_{1}{ }^{\prime}(0)$ is invertible, and each B_{i} is either a flip or the identity operator.

OR
20.B. For $(x, y) \in R^{2}$, Define $\mathrm{F}(\mathrm{x}, \mathrm{y})=\left(e^{x} \cos y-1, e^{x} \operatorname{siny}\right)$

Prove that $\mathrm{F}=G_{1} \circ G_{2}$, where $\left.G_{1}(x, y)=i \operatorname{cosy}-1, y\right) G_{2}(u, v)=(u,(1+u) \operatorname{tanv})$ are primitive in some neighbourhood of $(0,0)$.

