Rea. No	Name
---------	------

M.SC DEGREE END SEMESTER EXAMINATION OCTOBER 2016

SEMESTER - 3: MATHEMATICS

COURSE: **P3MAT11- MULTIVARIATE CALCULUS AND INTEGRAL TRANSFORMS**

Common for Regular (2015 Admission) & Supplementary / Improvement (2014 Admission)

Time: Three Hours Max. Marks: 75

PART A

(Answer **FIVE** questions. Each carries 2 marks.)

1. Define convolution of two real valued function f and g.

2. Define Fourier series of a periodic function f with period p.

3. Define the directional derivative of a function f at c in the direction u.

4. What do you mean by the Jacobian matrix?

5. If f = u + iv is a complex valued function with a derivative at a point z in C, then $J_f(z) = |f'(z)||f'(z)|$.

6. State mean value theorem for differentiable functions.

7. What do you meant by primitive mappings?

8. Define Stokes theorem.

 $(2 \times 5 = 10)$

PART B

(Answer **FIVE** questions. Each carries 5 marks)

9. Use the Fourier integral theorem to evaluate the improper integral

$$\frac{2}{\pi} \int\limits_0^\infty \frac{\sin v \cos v x}{v} \ \mathrm{d}v$$

10. State and prove Weierstrass approximation theorem.

11. Let u and v be two real valued functions defined on a subset S of the complex plane. Assume also that u and v are differentiable at an interior point c of S and that the partial derivatives satisfy the Cauchy-Riemann equations at c. Then the function f = u + iv has a derivative at c. Moreover, $f'(c) = D_1 u(c) + i D_1 v(c)$.

12. Compute the gradient vector $\nabla f(x,y)$ at those points (x,y) in \mathbb{R}^2 where it exists:

13. Consider the function $f(x, y) = xy (x^2 - y^2)/(x^2 + y^2)$) if $(x, y) \neq (0, 0) = 0$ if $(x, y) \in (0, 0)$ Show that $D_{1,2}$ $f(x,y) \neq D_{2,1}$ f(x,y).

14. Find and classify the extreme values (if any) of the function $f(x,y) = y^2 - x^3$.

15. If ω and λ are k- and m- forms, respectively, of class ϱ in E , then

$$d(\omega^{i} \lambda i = i) \wedge \lambda + (-1)^{k} \omega^{i} (d\lambda i)$$

16. For every $f \in \varrho i$, show that L(f) = L'(f).

 $(5 \times 5 = 25)$

PART C

(Answer **ALL** questions. Each carries 10 marks.)

17. A. Let $R = (-\infty, +\infty)$. Assume that $f, g \in L(R)$, and that atleast one of f or g is continuous and bounded on R. Let h denote the convolution, h = f * g. Then for every real u we have

$$\int\limits_{-\infty}^{+\infty}h(x)e^{-ixu}\;\mathrm{d}x\;\;=\;\;\text{(}\;\;\int\limits_{-\infty}^{+\infty}f(t)e^{-itu}dt\;\;\text{)}\;\text{(}\;\int\limits_{-\infty}^{+\infty}g(y)e^{-iyu}dy\;\;\text{)}.$$

The integral on the left exists both as a Lebesque integral and as an improper Riemann

integral.

OR

- 17. B. Let $f: R^2 \to R^3$ be defined by the equation $f(x, y) = (\sin x \cos y, \sin x \sin y, \cos x \cos y)$. Determine the Jacobian matrix D f(x,y)
- 18. A. Assume that g is differentiable at a, with total derivative g'(a). Let b = g(a) and assume

that f is differentiable at b, with total derivative $f'(\mathbf{b})$. Then prove that the composite

function $h = f \circ g$ is differentiable at a, and the total derivative h'(a) is given by

 $h'(a) = f'(b) \circ g'(a)$, the composition of the linear functions f'(b) and g'(a).

OR

- 18. B. a) If $x(r, \theta \dot{\iota} = r\cos\theta, y(r, \theta) = r\sin\theta$, show that $\frac{\partial(x, y)}{\partial(r, \theta)} = r$.
 - b) If If $x(r, \theta, \emptyset \dot{\iota} = r \cos\theta \sin\theta, y(r, \theta, \emptyset) = r \sin\theta \sin\theta, z(r, \theta, \emptyset) = r \cos\theta, show$

that

$$\frac{\partial(x,y,z)}{\partial(r,\theta,\varnothing)} = -r^2 \sin\varnothing.$$

19. A. Prove that if both partial derivatives $D_r f$ and $D_k f$ exists in an n-ball (c, $\delta \mathcal{L}$ and if both are differential at c. Then $D_{r,k}$ $f(c) = D_{k,r}$ f(c).

OR

- 19. B.For each of the following functions verify that the mixed partial derivatives $D_{1,2}$ f and $D_{2,1}$ f are equal a) $f(x,y) = \tan(x^2/y)$, $y \ne 0$ b) $f(x,y) = x^4 + y^4 - 4x^2y^2$ $(x,y) \ne (0,0)$
- 20. A. Suppose F is a C-Mapping of an open subset E in \mathbb{R}^n into \mathbb{R}^n , $0 \in E$, F(0) = 0, and F'(0) is invertible. Then prove that there is a neighborhood of 0 in \mathbb{R}^n in which a representation $F(x) = B_1 \ B_2 \dots B_{n-1} \ G_n \ \dots G_1$ (x) is valid, where each G_i is a primitive C Mapping in some neighborhood of 0. G_1 (0) = 0, $G_1'(0)$ is invertible, and each B_i is either a flip or the identity operator.

OR

20.B. For $(x, y) \in \mathbb{R}^2$, Define $F(x, y) = (e^x \cos y - 1, e^x \sin y)$

Prove that $F = G_1 \circ G_2$, where $G_1(x,y) = \delta \cos y - 1$, y) $G_2(u,v) = (u,(1+u)tanv)$ are primitive in some neighbourhood of (0,0).