Reg. No	
Name	

M.SC. DEGREE END SEMESTER EXAMINATION NOVEMBER 2016

SEMESTER - 1: MATHEMATICS

COURSE: 16P1MATT05 -: COMPLEX ANALYSIS

Time: Three Hours

Max. Marks: 75

PART A

(Answer all Questions. Each question carries 1.5 Marks

- 1. Show that an analytic function defined in a region Ω reduces to a constant if its argument is constant.
- 2. Find the fixed points of the linear transformation $w = \frac{3z-4}{z-1}$.
- 3. Prove that the linear transformation carries circles into circles.
- 4. Compute $\int_{|z|=r} x dz$ for the positive sense of the circle.
- 5. Let γ be a piecewise smooth differentiable closed curve, show that $n(\gamma, a\dot{\iota} = 0)$ in the unbounded region.
- 6. Compute $\int_{|z|=2}^{\infty} z^n (1-z)^{-m} dz$.
- 7. Define: Poles, Removable singularity, Essential singularity.
- 8. Prove that if f(z) is analytic and nonconstant in a region Ω then its absolute value |f(z)| has no maximum in Ω .
- 9. Find the poles and residues of the function $\frac{1}{(z^2-1)^2}$.
- 10. Show that any harmonic function which depends only on r must be of the form a $\log r + b$.

 $(1.5 \times 10 = 15)$

PART B

(Answer any FOUR Questions. Each question carries 5 Marks)

- 11. Show that the transformation $w = \frac{az+b}{cz+d}$ is the resultant of three
 - transformations of the form w=z+ , w=kz and $w=\frac{1}{z}$ where α and k are complex constants.
- 12. Prove that if a linear transformation carries a circle C_1 into a circle C_2 then it transforms any pair of symmetric points with respect to C_1 into a pair of symmetric points with respect to C_2 .

13. Prove that let f(z) be analytic on the rectangle R' obtained from a rectangle R by omitting a finite number of interior points ζ_j . If it is true that $\lim_{z \to \zeta_j} \dot{\zeta}$) f(z) =

0 ,for all j , then
$$\int\limits_{\partial R} f(z) dz = 0$$
.

- 14. State and prove Schwarz lemma.
- 15. State and prove Cauchy's residue theorem.
- 16. Prove that the arithmetic mean of a harmonic function over concentric circles

$$|z|=r$$
 is a linear function of $\log r$, $\frac{1}{2\pi} \int_{|z|=r} u d\theta = \alpha \log r + \beta$.

 $(5 \times 4 = 20)$

PART C

(Answer **either (a) or (b**) of the following **FOUR** Questions. Each question carries 10 Marks)

17. (a) Describe the geometrical interpretation of symmetry.

OR

- (b) Prove that $(z_1z_2z_3z_4\dot{c})$ is real if and only if the four points lie on a circle or on a straight line.
- 18. (a) (1) State and prove Cauchy's theorem in a disc.
 - (2)State and prove Cauchy's integral formula.

OR

- (b) Suppose $\varphi(\tau)$ is continous on an arc γ , then show that the function $F_n(\mathbf{z}) = \int_{\gamma} \frac{\varphi(\tau)}{(\tau-z)^n} d\tau \quad \text{is analytic in each of the region determined by } \gamma$ and $F_n(\mathbf{z}) = n F_{n+1}(\mathbf{z})$.
- 19. (a) Prove that if f(z) is analytic in Ω then $\int_{\gamma} f(z)dz = 0$ for every cycle γ which is homologus to zero in Ω .

OR

- (b) State and prove Taylor's theorem.
- 20. (a) Evaluate by the method of residues $\int_{0}^{\infty} \frac{\cos x}{x^2 + a^2} dx$, a is real.

OR

(b) State and prove Poisson's formula.

 $(10 \times 4 = 40)$
