Reg. No
Name

M.SC. DEGREE END SEMESTER EXAMINATION NOVEMBER 2016 SEMESTER - 1: MATHEMATICS
 COURSE: 16P1MATT05 -: COMPLEX ANALYSIS
 Time: Three Hours

Max. Marks: 75

PART A

(Answer all Questions. Each question carries 1.5 Marks

1. Show that an analytic function defined in a region Ω reduces to a constant if its argument is constant.
2. Find the fixed points of the linear transformation $w=\frac{3 z-4}{z-1}$.
3. Prove that the linear transformation carries circles into circles.
4. Compute $\int_{|z|=r} x d z$ for the positive sense of the circle.
5. Let γ be a piecewise smooth differentiable closed curve, show that $\mathrm{n}(\gamma, a i=$ 0 in the unbounded region.
6. Compute $\int_{|z|=2} z^{n}(1-z)^{-m} d z$.
7. Define: Poles, Removable singularity, Essential singularity .
8. Prove that if $f(z)$ is analytic and nonconstant in a region Ω then its absolute value $|f(z)|$ has no maximum in Ω.
9. Find the poles and residues of the function $\frac{1}{\left(z^{2}-1\right)^{2}}$.
10. Show that any harmonic function which depends only on r must be of the form a $\log r+b$.

$$
(1.5 \times 10=15)
$$

PART B
(Answer any FOUR Questions. Each question carries 5 Marks)
11. Show that the transformation $\mathrm{w}=\frac{a z+b}{c z+d}$ is the resultant of three transformations of the form $w=z+, w=k z$ and $w=\frac{1}{z}$ where α and k are complex constants.
12. Prove that if a linear transformation carries a circle C_{1} into a circle C_{2} then it transforms any pair of symmetric points with respect to C_{1} into a pair of symmetric points with respect to C_{2}.
13. Prove that let $\mathrm{f}(\mathrm{z})$ be analytic on the rectangle R^{\prime} obtained from a rectangle R by omitting a finite number of interior points ζ_{j}. If it is true that $\lim _{z \rightarrow \zeta_{j}}(i) f(z)=$

0 , for all j , then $\int_{\partial R} f(z) d z=0$.
14. State and prove Schwarz lemma.
15. State and prove Cauchy's residue theorem.
16. Prove that the arithmetic mean of a harmonic function over concentric circles $|z|=r$ is a linear function of $\log r, \frac{1}{2 \pi} \int_{|z|=r} u d \theta=\alpha \log r+\beta$.

PART C

(Answer either (a) or (b) of the following FOUR Questions. Each question carries 10 Marks)
17. (a) Describe the geometrical interpretation of symmetry.

OR

(b) Prove that $\left(z_{1} z_{2} z_{3} z_{4}\right.$ b is real if and only if the four points lie on a circle or on a straight line.
18. (a) (1) State and prove Cauchy's theorem in a disc.
(2)State and prove Cauchy's integral formula.

OR

(b) Suppose $\varphi(\tau)$ is continous on an arc γ, then show that the function

$$
F_{n}(z)=\int_{Y} \frac{\varphi(\tau)}{(\tau-z)^{n}} d \tau \quad \text { is analytic in each of the region determined by } \gamma
$$

$$
\text { and } F_{n}^{\prime}(z)=n F_{n+1}(z) \text {. }
$$

19. (a) Prove that if $f(z)$ is analytic in Ω then $\int_{\gamma} f(z) d z=0$ for every cycle γ which is homologus to zero in Ω.

OR

(b) State and prove Taylor's theorem.
20. (a) Evaluate by the method of residues $\int_{0}^{\infty} \frac{\cos x}{x^{2}+a^{2}} d x$, a is real.

OR

(b) State and prove Poisson's formula.

