B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER- 1: MATHS COMPLEMENTARY FOR PHYSICS/CHEMISTRY COURSE- U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

For Supplementary (2014 Admission)

Time: Three Hours Max Marks: 75

Part A

Short Answer Questions. Answer all questions. Each question carries one mark.

1. Find the value of
$$\lim_{\theta \to 0} \left(3 + \frac{\sin 3\theta}{3\theta} \right)$$

2. If $3-x^3 \le g(x) \le 3\sec x$ for all x, find $\lim_{x\to 0} g(x)$.

3. If
$$f(x)=(x-1)^2+2$$
 , find $f(0)$.

4. Is the function $f(x) = x^2$ continuous at x = 0?

5. Functions with the same derivative differ by a ______.

6. Find the value of
$$f(x, y, z) = \sqrt{x^2 + y^2 - z^2}$$
 at (4,-3,0).

7. Find the value of
$$\frac{\partial f}{\partial x}$$
 at (0,1) where $f(x, y) = \frac{x}{y^2}$.

8. The period of cos x is

9. Write the relation connecting circular tan function and hyperbolic tan function.

10. Prove that
$$e^{ix} = \cos x + i \sin x$$
.

 $(1 \times 10 = 10)$

Part B

Brief Answer Questions. Answer **any eight** questions. Each question carries **two** marks.

11. Let
$$f(x) = \begin{cases} 3-x, & x < 2 \\ \frac{x}{2}+1, & x > 2 \end{cases}$$

(a) Find
$$\lim_{x \to 2^+} f(x)$$
 and $\lim_{x \to 2^-} f(x)$

(b) Does $\lim_{x\to 2} f(x)$ exist? Justify.

12. Find the parametrization of the line segment with end points (-1,-3) and (4,1).

13. If
$$y = \sin u$$
 and $u = 3x + 1$ then find $\frac{dy}{dx}$.

14. If $x^3 + y^3 = 18xy$, find $\frac{dy}{dx}$ using implicit differentiation.

15. Find the function g(x) whose derivative is
$$x^2 + 2x$$
 and passing through (-1,1).

16. If $f(x,y) = ye^x$, find the first order partial derivatives.

17. Find
$$\frac{dw}{d\theta}$$
 at $\theta = \frac{\pi}{2}$ using chain rule, where $w = xy$, $x = \cos \theta$ and $y = \sin \theta$

18. If
$$x = \cos \theta + i \sin \theta$$
, find $x^n - \frac{1}{x^n}$

19. Prove that
$$\cosh^2 x - \sinh^2 x = 1$$

20. Write the infinite series expansion of coshx.

$$(2 \times 8 = 16)$$

Part C

Short Essay Type Questions. Answer **any five** questions. Each question carries **5** marks.

$$\lim_{x\to 10} \sqrt{19-x}$$
 21. Find a $\delta > 0$, to show that $\lim_{x\to 10} \sqrt{19-x}$ = 3 that works for $\epsilon = 1$

- 22. Find the equation of the tangent and the normal to the curve $x^2-y^2+xy=1$ at (2,3)
- 23. State and prove Mean Value Theorem.
- 24. Find all the first and second partial derivatives of f(x,y)=x+y+xy

25. Express
$$\frac{\partial w}{\partial r}$$
 and $\frac{\partial w}{\partial s}$ in terms of r and s ,if $w=x+2y+z^2, x=\frac{r}{s}, y=r^2+\ln s, z=2r$

26. Expand $\cos^7\theta$ in a series of cosines of multiples of θ .

27. Separate
$$\tan(\alpha + i\beta)$$
 into real and imaginary parts.

$$(5 \times 5 = 25)$$

Part D

Essay. Answer any two questions. Each question carries 12 marks.

- 28. a) Find the derivative of $y=\sqrt{x}$ for x>0. Find the tangent line to the curve at x=4.
 - b) Prove that if f has a derivative at x = c, then f is continuous at x = c. Is the converse true? Give an example.
- 29. Find the critical points of $f(x) = x^{4/3} 4x^{1/3}$. Identify the intervals on which f is increasing and

decreasing. Find the local and extreme values of the function.

- 30. a) $z = \tan^{-1} \frac{y}{x}$, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
 - b) Prove the mixed derivative theorem $f_{xy} = f_{yx}$ for $f(x, y) = x \cos y + y e^x$.
- 31. Sum the series $\frac{1}{2}\sin\alpha + \frac{1}{2} \cdot \frac{3}{4}\sin2\alpha + \frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6}\sin3\alpha + \dots$ (12 × 2 = 24)
