B.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER 2016 SEMESTER- 1: MATHS COMPLEMENTARY FOR PHYSICS/CHEMISTRY COURSE- U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGONOMETRY

For Supplementary (2014 Admission)
Time: Three Hours
Max Marks: 75

Part A

Short Answer Questions. Answer all questions. Each question carries one mark.

1. Find the value of $\lim _{\theta \rightarrow 0}\left(3+\frac{\sin 3 \theta}{3 \theta}\right)$
2. If $3-x^{3} \leq g(x) \leq 3 \sec x$ for all x , find $\lim _{x \rightarrow 0} g(x)$
3. If $f(x)=(x-1)^{2}+2$, find $f^{\prime}(0)$.
4. Is the function $f(x)=x^{2}$ continuous at $x=0$?
5. Functions with the same derivative differ by a \qquad .
6. Find the value of $f(x, y, z)=\sqrt{x^{2}+y^{2}-z^{2}}$ at $(4,-3,0)$.
7. Find the value of $\frac{\partial f}{\partial x}$ at $(0,1)$ where $f(x, y)=\frac{x}{y^{2}}$.
8. The period of $\cos x$ is \qquad .
9. Write the relation connecting circular tan function and hyperbolic tan function.
10. Prove that $e^{i x}=\cos x+i \sin x$.

Part B

Brief Answer Questions. Answer any eight questions. Each question carries two marks.
11. Let $f(x)= \begin{cases}3-x, & x<2 \\ \frac{x}{2}+1, & x>2\end{cases}$
(a) Find $\lim _{x \rightarrow 2^{+}} f(x)$ and $\lim _{x \rightarrow 2^{-}} f(x)$
(b) Does $\lim _{x \rightarrow 2} f(x)$ exist? Justify.
12. Find the parametrization of the line segment with end points $(-1,-3)$ and $(4,1)$.
13. If $y=\sin u$ and $u=3 x+1$ then find $\frac{d y}{d x}$.
14. If $x^{3}+y^{3}=18 x y$, find $\frac{d y}{d x}$ using implicit differentiation.
15. Find the function $g(x)$ whose derivative is $\frac{1}{x^{2}}+2 x$ and passing through (1,1).
16. If $f(x, y)=y e^{x}$, find the first order partial derivatives.
17. Find $\frac{d w}{d \theta}$ at $\theta=\frac{\pi}{2}$ using chain rule, where $w=x y, x=\cos \theta$ and $y=\sin \theta$
18. If $x=\cos \theta+i \sin \theta$, find $x^{n}-\frac{1}{x^{n}}$
19. Prove that $\cosh ^{2} x-\sinh ^{2} x=1$.
20. Write the infinite series expansion of coshx.

$$
(2 \times 8=16)
$$

Part C
Short Essay Type Questions. Answer any five questions. Each question carries 5 marks.
21. Find a $\delta>0$, to show that $\lim _{x \rightarrow 10} \sqrt{19-x} \quad=3$ that works for $\varepsilon=1$
22. Find the equation of the tangent and the normal to the curve $x^{2}-y^{2}+x y=1$ at $(2,3)$
23. State and prove Mean Value Theorem.
24. Find all the first and second partial derivatives of $f(x, y)=x+y+x y$
25. Express $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$ in terms of r and s,if

$$
w=x+2 y+z^{2}, x=\frac{r}{s}, y=r^{2}+\ln s, z=2 r
$$

26. Expand $\cos ^{7} \theta$ in a series of cosines of multiples of θ.
27. Separate $\tan (\alpha+i \beta)$ into real and imaginary parts.

$$
(5 \times 5=25)
$$

Part D

Essay. Answer any two questions. Each question carries $\mathbf{1 2}$ marks.

28. a) Find the derivative of $y=\sqrt{x}$ for $x>0$. Find the tangent line to the curve at $x=4$.
b) Prove that if f has a derivative at $x=c$, then f is continuous at $x=c$. Is the converse true? Give an example.
29. Find the critical points of $f(x)=x^{4 / 3}-4 x^{1 / 3}$. Identify the intervals on which f is increasing and
decreasing. Find the local and extreme values of the function.
30. a) ${ }^{z=\tan ^{-1} \frac{y}{x}}$, prove that $\frac{\partial^{2} z}{\partial x^{2}}+\frac{\partial^{2} z}{\partial y^{2}}=0$
b) Prove the mixed derivative theorem $f_{x y}=f_{y x}$ for $f(x, y)=x \cos y+y e^{x}$.
31. Sum
the series $\frac{1}{2} \sin \alpha+\frac{1}{2} \cdot \frac{3}{4} \sin 2 \alpha+\frac{1}{2} \cdot \frac{3}{4} \cdot \frac{5}{6} \sin 3 \alpha+\ldots$
$(12 \times 2=24)$
