Reg. No...... Name...... Name.....

M. Sc. DEGREE END SEMESTER EXAMINATION - NOVEMBER 2016

SEMESTER - 1: MATHEMATICS

COURSE: 16P1MATT03 -: MEASURE THEORY AND INTEGRATION

Time: Three Hours Max. Marks: 75

PART A

(Answer all questions. Each question carries 1.5 marks)

- 1. Prove that the Lebesgue outer measure m* is translation invariant.
- 2. Show that if E_1 and E_2 are measurable, then $m(E_1 \cup E_2) + m(E_1 \cap E_2) = mE_1 + mE_2$.
- 3. Show that if f is a measurable function and f=g a.e., then g is measurable.

 $\phi = \sum_{i=1}^n a_i \chi_{E_i}$, with $E_i \cap E_j \neq \phi$ for $i \neq j$. Suppose each E_i is a measurable set of finite

$$\int \phi = \sum_{i=1}^{n} a_{i} m E_{i}$$

measure. Then show that

5. If f and g are bounded measurable functions defined on a set \boldsymbol{E} of finite measure

 $\int\limits_{E} af + bg = a \int\limits_{E} f + b \int\limits_{E} g$ then show that

- 6. Let f be a non-negative measurable function. Show that $\int f=0$ implies f=0 a.e.
- 7. Define Measure Space. Give an example.

$$\mu\big(\mathop{\cup}\limits_{i=1}^{\infty}E_i\big)\leq\sum_{i=1}^{\infty}\mu\big(E_i\big)$$

- 8. If $E_i \in B$, then show that
- 9. Show that countable union of positive sets is positive.
- 10. If Y is any class of subsets of X, then show that there exist a smallest monotone class $M_0(Y)$ containing Y.

 $(1.5 \times 10 = 15)$

PART B

Answer any four of the following .Each question carries 5 marks

- 11. Show that the interval (a, ∞) is measurable.
- 12. Define Cantor set **P**. Show that **P** is measurable.
- 13. Let f be non negative function which is integrable over a set *E*. Then show that

given $\epsilon>0$, there is $\delta>0$ such that for every set A subset of E with $m(A)<\delta$, $\int_A f<\dot{\iota}$.

- 14. State and prove Lebesgue Convergence Theorem.
- 15. Let μ be a measure defined on a σ -algebra $\mbox{\bf a}$. Then show that the set function μ^*

$$\inf \sum_{i=1}^{\infty} A_i \qquad E \subset \stackrel{\infty}{\stackrel{\iota}{\iota}} A_i$$
 defined by $\mu^*(E) = \stackrel{i=1}{\stackrel{\iota=1}{\iota}}$, $A_i \in \mathbf{a}$ and $i=1$ is an outer measure on a...

16. Show that if E \in S XT, then for each x \in X and y \in Y, $E_x \in$ T and $E^y \in$ S.

$$(5 \times 4 = 20)$$

PART C

Answer **either I or II** of each question below. Each question carries 10 marks

- 17. I. a). Show that outer measaure of an interval is its length.
 - b).Define algebra. Show that the family M of measurable sets is an algebra.

OR

- II. a). Show that there exist a set which is not measurable.
- b). Show that a set A is measurable if and only if its characteristic function is measurable.
- 18. I. a). Let f be defined and bounded on a measurable set E with mE finite. Show that

$$\inf_{f \leq \psi} \int_{E} \psi(x) dx = \sup_{f \geq \phi} \int_{E} \phi(x) dx$$
 in order $\int_{E} \psi(x) dx = \int_{E} \phi(x) dx$ for all simple functions ϕ and ψ , it is necessary and sufficient that f is measurable.

b). Let f be a bounded function defined on [a,b]. Show that f is Reimann

$$R\int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

- II. a). State and prove Fatou's lemma.
 - b). State and prove Monotone Convergence theorem.
- 19. I. a) . Let E be a measurable set such that $0 < v(E) < \infty$. Then show that there is a positive

set A contained in E with v(A) > 0.

b). State and prove Hahn Decomposition Theorem.

OR

- II. State and Prove Caratheodory's Theorem.
- 20. I. Let [[X, S,μ]] and [[Y,T, ν]] be σ- finite measure spaces. For V ϵ SXT write

 $\phi(x)=\nu(V_x), \ \psi(y)=\mu(V^y),$ for each $x\in X$ and $y\in Y.$ Then show that ϕ is Smeasurable, ψ is

T- measurable and
$$\int_X \varphi \, dx = \int_Y \psi \, dv$$

OR

- II. (a). Show that the class of elementary sets **E** is an algebra.
 - (b). Let f be a non negative S XT- measurable function and

let
$$\varphi(x) = \int_{Y} f_{x} dv$$
, $\psi(y) = \int_{X} f^{y} d\mu$

for each x \in X, y \in Y; then show that $\ ^{\psi}$ is S- measurable, $\ ^{\psi}$ is T-measurable and

$$\int_{X} \varphi d\mu = \int_{XxY} fd(\mu Xv) = \int_{Y} \psi dv$$
(10 x 4 = 40)
