Reg. No	Name :
100000000000000000000000000000000000000	1.0000000000000000000000000000000000000

MSc DEGREE END SEMESTER EXAMINATIONS – NOVEMBER 2015 SEMESTER- 1, SUBJECT: PHYSICS COURSE: P1PHYT03 -ELECTRODYNAMICS

Time: Three Hours.

Part A (Objective Type)

(Answer all questions. Each question carries 1 Mark)

	U	expression for Coulom c) curl A = μ₀ J	0 0	
2. The ratio of the a) 1.25	relativistic energy to t b) 1. 50	he rest energy of a part c) 1.60	icle moving at speed of 0.6 <i>c</i> is d) 1.75	
 3. In the case of TM waves in a rectangular waveguide, which of the following modes has the smallest cut off frequency? a) TM₀₀ b) TM₀₁ c) TM₁₀ d) TM₁₁ 				
 4. Which of the following is a wrong approximation in the case of a perfect radiating magnetic dipole? a) <i>b</i><<<i>c</i>/ω b) <i>b</i><<<i>c</i>/ω c) <i>r</i>>> <i>c</i>/ω d) <i>b</i>>> <i>c</i>/ω 				
5. A half wave loss less transmission line section has a load impedance of 10 ohms. The input impedance offered by the section is ohms				

impedance offered by the section is ohms b) 10 d) 100 c) 20 a) 5

 $(1 \times 5 = 5)$

Part B (Short answer)

(Answer any 5 questions. Each question carries 2 Marks)

- 6. Show that the gradient of scalar potential is irrotational.
- 7. Write down the different elements of Maxwell's stress tensor.
- 8. What are four vectors? Mention an example and give its components.
- 9. Show that the product **E**.**B** is relativistically invariant.
- 10. What do you mean by retarded time and retarded potential?
- 11. 'TEM waves cannot exist in a single-conductor hollow or dielectric filled wave guide'. Justify.
- 12. Give the physical basis of 'radiation reaction'.
- 13. What do you mean by radiation resistance of an antenna?

 $(2 \times 5 = 10)$ (PTO)

P 130

Max. Marks: 75

Part C (Problem/Short essay)

(Answer any 3 question. Each question carries 4 Marks)

- 14. Using Maxwell's equations, deduce the nonhomogenous wave equation for the scalar potential.
- 15. The coordinates of two events A and B in a certain frame of reference are (2, 5, 0, ct_A = 10) and (4, 8, 0, ct_B =15). Calculate the invariant space time interval between the two events. Find the speed of a reference frame, if any, in which the two events will appear at the same point.
- 16. A 500 M Hz plane wave is travelling through a medium of ε_r = 1.6 and μ_r=1.6. If the amplitude of the electric field is 50 mV/ m, calculate: *a*) the velocity of propagation *b*) the wavelength and *c*) the magnitude of the magnetic field intensity.
- 17. Find the inductance per unit length, capacitance per unit length and characteristic impedance of a parallel plate loss less transmission line of width 5 mm and plate separation 1 mm with air s dielectric.
- 18. Define the term 'directivity' of an antenna. Prove that the directivity of a quarter wave antenna is same as that of a half wave antenna.

 $(3 \times 4 = 12)$

Part D (Essays)

(Answer all questions. Each question carries 12 Marks)

19. (a) Discuss the normal incidence of a plane electromagnetic wave at the interface of two linear media. Obtain the expressions for the reflected and transmitted amplitudes and hence find the reflection and transmission coefficients.

OR

- (b) State Poynting's theorem and obtain its integral and differential form. Write down Poynting's vector and give its physical meaning.
- 20. (a) Deduce the transformation rules for the electric and magnetic field components.

OR

- (b) Assuming the transformation rules for the electric and magnetic fields, obtain the electromagnetic field tensor. Describe how the tensor elements can be expressed using the scalar and vector potentials.
- 21. (a) Deduce the Lienard Wiechert Potentials for a moving point charge. Using them obtain the expressions for the electric and magnetic fields of a moving point charge.

(b) Derive the formula for the total energy radiated by an oscillating electric dipole.

22. (a) Discuss the theory of a rectangular waveguide. Derive the expressions for cut off frequency in the case of TM and TE waves.

OR

(b) Explain the propagation of TM and TE waves in a parallel plate wave guide and show that the cut off frequencies are equal.

(12 x 4= 48)
