Reg. No \qquad Name

M.Sc. DEGREE END SEMESTER EXAMINATION OCTOBER NOVEMBER 2016
 SEMESTER - 1 : MATHEMATICS COURSE P1MATT01: LINEAR ALGEBRA
 (For Supplementary / Improvement - 2015 Admission)

Time: Three Hours
Max. Marks: 75

Part A
 (Answer any five questions. Each question carries 2 marks)

1. Find the span of the vectors $\alpha_{1}=(1,0,-1), \alpha_{2}=(1,2,1)$ and $\alpha_{3}=(0,-3,2)$ in \mathbf{R}^{3}.
2. Find the range, rank and null space of the zero transformation.
3. What you mean by a non-singular linear transformation. Show that the transformation $T\left(x_{1}, x_{2}\right)=\left(x_{1}+x_{2}, x_{1}\right)$ is non-singular..
4. Let V be the space of all polynomial functions from \mathbf{R} into \mathbf{R} of the form $f(x)=$ $C_{0}+C_{1} x+C_{2} x^{2}+C_{3} x^{3}$.

Find $[D]_{B}$, where D is the differentiation operator and $B=\left\{1, x, x^{2}, x^{3}\right\}$.
5. Let A be a 2×2 matrix over K. Show that $(\operatorname{adj} A) A=A(\operatorname{adj} A)=(\operatorname{det} A) I$.
6. Define (i) Characteristic value (ii)Characteristic vector and (iii) characteristic space.
7. If det denote the unique determinant function on 2×2 matrices over K , show that $\operatorname{det}(\operatorname{adj} A)=\operatorname{det}(A)$.
8. Find an invertible real matrix P such that $P^{-1} A P$ and $P^{-1} B P$ are both diagonal where

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 2
\end{array}\right], B=\left[\begin{array}{ll}
3 & -8 \\
0 & -1
\end{array}\right] .
$$

Part B

Answer any five questions. Each question carries 5 marks
9. Let V be the vector space of all functions from \mathbf{R} into \mathbf{R}. Let V_{e} be the subset of even functions,
$f(-x)=f(x)$, let V_{o} be the subset of odd functions, $f(-x)=-f(x)$
(i). Prove that V_{e} and V_{0} are subspaces of V.
(ii). Prove that $\mathrm{V}_{\mathrm{e}}+\mathrm{V}_{0}=\mathrm{V}$
(iii).Prove that $\mathrm{V}_{\mathrm{e}} \cap \mathrm{V}_{0}=\varphi$
10. If A is an $m \times n$ matrix with entries in the field F, then show that row
$\operatorname{rank}(A)=\operatorname{column} \operatorname{rank}(A)$.
11. Let V be a finite dimensional vector space over the field F and let $B=\left\{\alpha_{1}, \alpha_{2} \ldots \alpha_{n}\right\}$ be a basis for V. Then show that there is a unique dual basis $B^{*}=\left\{f_{1}, f_{2}, \ldots, f_{n}\right\}$ for V^{*} such that $f_{i}\left(\alpha_{j}\right)=\delta_{i j}$. Also show that for each linear functional f on V,

$$
f=\sum_{i=1}^{n} f\left(\alpha_{i}\right) f_{i} \quad \text { and for each } \alpha \text { in } \mathrm{V}, \quad \alpha=\sum_{i=1}^{n} f_{i}\left(\alpha \mid \alpha_{i}\right.
$$

12. Let V and W be finite dimensional vector spaces over the field F. Let B be the ordered basis for V with dual basis B^{*} and let B^{\prime} be an ordered basis for W with dual basis $\mathrm{B}^{* *}$. Let T be a linear transformation from V into W. Let A be the matrix of T relative to B, B^{\prime} and let B be the matrix of T^{t} relative to $B^{\prime *}, B *$. Show that $B_{i j}=A_{j i}$.
13. Use Cramer's rule to solve the system of linear equation over the field of rational numbers.

$$
\begin{aligned}
& x+y+z=11 \\
& 2 x-6 y-z=0 \\
& 3 x+4 y+2 z=0
\end{aligned}
$$

14. Let T be a linear operator on \mathbf{R}^{3} which is represented in the standard ordered basis by the matrix

$$
\left[\begin{array}{ccc}
-9 & 4 & 4 \\
-8 & 3 & 4 \\
-16 & 8 & 7
\end{array}\right] \text {. Prove that } T \text { is diagonalizable by exhibiting a basis for } \mathbf{R}^{3} \text {, each }
$$

vector of which is a characteristic vector of T.
15. Let W be an invariant subspace for T . Show that the characteristic polynomial for the restriction
operator T_{w} divides the characteristic polynomial for T . Show also that the minimal polynomial for T_{w}
divides the minimal polynomial for T.
16. Let F be a commutating family of diagonalizable linear operators on the finite dimensional vector space V. Show that there exist an ordered basis for V such that every operator in F is represented in that basis by a diagonal matrix.
$(5 \times 5=25)$

Part C

Answer part 1 or part II of each questions. Each question carries 10 marks 17.I.(a). Let $B=\left\{\alpha_{1}, \alpha_{2}, \alpha_{3}\right\}$ be an ordered basis for \mathbf{R}^{3} consisting of $\alpha_{1}=\{1,0,-1\}, \alpha_{2}=\{1$, $1,1\}, \alpha_{3}=\{1,0,0\}$.

What are the coordinates of the vector (a, b, c) in the ordered basis B.
(b). Let m and n be positive integers and let F be a field. Suppose W is a subspace of F^{n} and $\operatorname{dim} W \leq m$. Show that there is precisely one $m \times n$ row reduced echelon matrix over F which has W as its subspace.
II.(a). Let V be a vector space over the field F of complex numbers. Suppose α, β and γ are linearly independent vectors in V. Prove that $(\alpha+\beta),(\beta+\gamma)$ and $(\alpha+\gamma)$ are linearly independent.
(b). Let R be a non-zero row-reduced echelon matrix. Show that the non-zero vectors of \mathbf{R} form a basis for the row space of R.
18. I. (a). Show that the set of all invertible operators on a vector space V together with the
operation function composition is a group.
(b). Let V be a finite dimensional vector space and let T be a linear operator on V. Suppose
that $\operatorname{rank}(T)=\operatorname{rank}\left(T^{2}\right)$. Prove that the range and null space of T are disjoint. ie, they
have only the zero vector in common.
II. (a). Let V be a finite dimensional vector space over the field F , and let W be a subspace of
V. Show that $\operatorname{dim} W+\operatorname{dim} W^{0}=\operatorname{dim} V$.
(b). If f is a nonzero linear functional on a vector space V, show that the null space of f is a
hyperspace in V. Conversely show that every hyperspace in V is a null space of a (not
unique) nonzero linear functional on V .
19. I. (a). Let D be an n-linear function on $n \times n$ matrices over K. Suppose D has the property that
$D(A)=0$ whenever two adjacent rows of A are equal. Show that D is alternating.
(b). Show that a linear combination of n-linear functions is n-linear.
II. (a). Let T and U be linear operators on the finite dimensional vector space V . Prove that

$$
\text { (i). } \operatorname{det}(T U)=(\operatorname{det} T)(\operatorname{det} U)
$$

(ii). Define orthogonal matrix. If A is orthogonal, show that. Give an example of an orthogonal matrix for which $\operatorname{det} A=-1$.
(b). If A is an invertible $n \times n$ matrix over a field F, show that $\operatorname{det} A \neq 0$
20. I. State and prove Cayley- Hamilton Theorem.
II. (a). Let T be a linear operator on the finite- dimensional space V. Let $c_{1}, \ldots . c_{k}$ be the distinct characteristic values of T and let W_{i} be the span of characteristic vectors associated with the characteristic value c_{i}. If $W=W_{1}+\ldots \ldots \ldots+W_{k}$, then show that $\operatorname{dim} W=\operatorname{dim} W_{1}+\ldots \ldots .+\operatorname{dim} W_{k}$. If B_{i} is an ordered basis for W_{i}, then show that $B=\left(B_{1}, \ldots B_{k}\right)$ is an ordered basis for W.
(b). Let V be a finite dimensional vector space over the field F and let T be a linear operator on V . Show that T is triangulable if and only if the minimal polynomial for T is a product of linear polynomials over F.

