\qquad

M.SC DEGREE END SEMESTER EXAMINATION NOVEMBER 2016 SEMESTER - 1: MATHEMATICS COURSE: 16P1MATT01 -: LINEAR ALGEBRA

Time: Three Hours
Max. Marks: 75

PART A
 (Answer all questions. Each question carries $\mathbf{1 . 5}$ mark)

1. Check whether the set of all functions f such that $f\left(x^{2}\right)=i$ is a subspace of the vector space of all functions from \boldsymbol{R} into \boldsymbol{R}.
2. Find a basis for the space of all 2×2 matrices with complex entries satisfying $A_{11}+A_{22}=0$.
3. Let V and W be vector spaces over a field F. Prove or disprove: every bijection from V into W is a linear transformation from V into W.
4. Prove that every $m \times n$ matrix over a field F defines a linear transformation from F^{n} into F^{m}.
5. A is a 3×3 with all its eigen values are integers. If determinant of A is -1 and one of the eigen values is 1 , find the other eigen values.
6. What is a linear functional? Give an example.
7. If the characteristic polynomial of an operator is $x^{4}-2 x^{2}+1$, what are the possible candidates for its minimal polynomial. Justify.
8. Let T be the linear operator on \boldsymbol{R}^{2} defined by $T(1,0)=(0,1)$ and $T(0,1)=(-1$, 0). Find the subspace of \boldsymbol{R}^{2} which is invariant under T.
9. If E is a projection of a vector space V and $\alpha \in V$, show that $\alpha-E \alpha$ is in the null space of E.
10. Check whether $\mathrm{T}: \boldsymbol{R}^{2} \rightarrow \boldsymbol{R}^{2}$ defined by $\mathrm{T}(X)=A X$ where $\mathrm{A}=\left[\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right]$ is diagonalizable.

$$
(1.5 \times 10=15)
$$

PART B

(Answer any four questions. Each question carries $\mathbf{5}$ marks.)
11. Let V be a vector spaces over the field F. Suppose there are a finite number of vectors in V which span V. Prove that V is finite dimensional.
12. Let V be an n-dimensional vector space over the field F and W be an m dimensional vector space over F. Let B and B ' be ordered bases for V and W respectively. For any linear transformation T from V into W, prove that there is an $m \times n$ matrix A with entries in F such that $[T \alpha]_{B},=A[\alpha]_{B}$
13. Define hyperspace. Let V be a finite dimensional vector space over the field F. Show that the null space of any nonzero linear functional on V is a hyperspace.
14. Let A be an $n \times n$ matrix with λ as an eigen value show that: (1) $k+\lambda$ is an eigen value of $A+k l$. (2) If A is nonsingular, $\frac{1}{\lambda}$ is an eigen value of A^{-1}.
15. Let V be a vector spaces and E be a projection on V. Show that V is the direct sum of R and N where R is the range space and N is the null space of E.
16. Let V be a finite dimensional vector space over the field F and let T be a linear operator on V. Prove that T is diagonalizable if and only if the minimal polynomial for T is of the form
$p=\left(x-c_{1}\right)\left(x-c_{2}\right) \ldots\left(x-c_{k}\right)$ where $c_{i} \in F$ are distinct.
$(5 \times 4=20)$

PART C

(Answer (a) or (b) from each question. Each question carries $\mathbf{1 0}$ marks.)
17. (a) Let A and B be $m \times n$ matrices over the field F. Prove that the following statements are equivalent:
(1) A and B are row - equivalent. (2) A and B have the same row space. (3) $B=P A$, where P is an invertible $m \times m$ matrix.
(b) Let V be the space of all polynomial functions from \boldsymbol{R} into \boldsymbol{R} of atmost degree 2 . That is the space of all functions f of the form $f(x)=c_{0}+c_{1} x+$ $\mathrm{C}_{2} x^{2}$. Let t be a fixed real number and define $g_{1}(x)=1, g_{2}(x)=x+t, g_{3}(x)$ $=(x+t)^{2}$. Prove that $B=\left\{g_{1}, g_{2}, g_{3}\right\}$ is a basis for V. Find the coordinates of $f(x)=c_{0}+c_{1} x+c_{2} x^{2}$ in the basis B.
18. (a) (1) State and prove the Rank - Nullity theorem.
(2) Define f: $\boldsymbol{R}^{3 \rightarrow} \boldsymbol{R}^{2}$ by $f(1,0,0)=(1,-1)$ and $f(0,1,0)=(2,-2)$. Can f be a linear transformation? If so how many such linear transformations are there? Justify.
(b) (1) Let $g, f_{1}, \ldots f_{r}$ be linear functionals on a vector space V with respective null spaces $N, N_{1}, \ldots N_{r}$. Then prove that g is a linear combination of $f_{1}, \ldots f_{\mathrm{r}}$ if and only if N contains the intersection $N_{1} \cap \ldots \cap N_{r}$.
(2) Let n be a positive integer and F a field. Let W be the set of all vectors $\left(x_{1}, \ldots x_{n}\right)$ in F^{n} such that $x_{1}+\ldots+x_{n}=0$. Prove that W^{0} consists of all linear functionals of the form $f\left(x_{1}, \ldots x_{n}\right)=c \sum_{j=1}^{n} x_{j}$.
19. (a) (1) Find the determinant of A^{10} where $A=\left[\begin{array}{ccc}1 & 2 & 5 \\ 0 & -1 & -25 \\ 0 & 0 & 1\end{array}\right]$. Justify your answer.
(2) Let T be a linear operator on a finite dimensional vector space V. Let $c_{1}, \ldots c_{k}$ be the distinct characteristic values of T and let W_{i} be the null space of T -
c_{i} l. Prove that the following are equivalent: (1) T is diagonalizable. (2) The characteristic polynomial for T

(b) Diagonalize the matrix $\left[\begin{array}{lll}1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1\end{array}\right]$.
20. (a) State and prove a necessary and sufficient condition for a linear operator on a finite dimensional vector space to be triangulable.
(b) Let $A=\left[\begin{array}{ccc}0 & 1 & 0 \\ 2 & -2 & 2 \\ 2 & -3 & 2\end{array}\right]$. Is A similar over the field of real numbers to a triangular matrix?
$(10 \times 4=40)$

