MSc DEGREE END SEMESTER EXAMINATION - NOVEMBER 2015
SEMESTER: 1: SUBJECT - PHYSICS
COURSE: P1PHYT01 -MATHEMATICAL METHODS IN PHYSICS - I
(Regular, Supplementary / Improvement)
Time: Three Hours
Max. Marks: 75

Part A (Objective Type)

(Answer all questions. Each question carries 1 Mark)

1. The condition for a solenoidal vector field is
(a) Grad $\mathrm{A}=0$
(b) $\mathrm{Div} \mathrm{A}=0$
(c) $\operatorname{Curl} \mathrm{A}=0$
(d) Curl A= finite
2. The Eigen values of the matrix $\left[\begin{array}{cc}\operatorname{Cos} \theta & -\operatorname{Sin} \theta \\ \operatorname{Sin} \theta & \operatorname{Cos} \theta\end{array}\right]$ are
(a) $\pm e^{i \theta}$
(b) $e^{ \pm i \theta}$
(c) $\operatorname{Cos} \theta \pm \operatorname{Sin} \theta$
(d) $\pm \tan \theta$
3. If $\mathrm{AY}=\mathrm{PY}$, then $\mathrm{Y}=$
(a) PYA
(b) PYA^{-1}
(c) $\mathrm{A}^{-1} \mathrm{PY}$
(d) PYP^{-1}
4. The value of i-tensor $i_{p p q}$ is
(a) 1
(b) -1
(c) 0
(d) infinity
5. The value of $\Gamma^{1 / 2}$ is
(a) 0
(b) $\pi / 2$
(c) π
(d) $\sqrt{\pi}$

$$
(1 \times 5=5)
$$

Part B (Short answer)

(Answer any 5 questions. Each question carries 2 Marks)
6. Explain Gauss's divergence theorem
7. Express the position and velocity vectors of a particle in cylindrical coordinates
8. Prove that the Eigen values of a Hermitian matrix are always real
9. Evaluate a, b and c when $\left[\begin{array}{ccc}0 & 2 b & c \\ a & b & -c \\ a & -b & c\end{array}\right]$ is orthogonal
10. Define covariant, contravariant and mixed tensors. Give examples.
11. Show that the Kronecker delta is a mixed tensor of rank 2.
12. Using the generating function for Hermites polynomials, obtain the relation $H_{n}^{\prime}(x)=2 n H_{n-1}$
13. Show that $\Gamma(n+1)=n \Gamma n$, where n is an integer. $(2 \times 5=10)$

Part C (Problem/Short essay)

(Answer any 3 question. Each question carries 4 Marks)
14. Describe the Schimidt orthogonalization method for constructing an orthogonal set of functions from a non-orthogonal set.
15. Solve the following set of equations using Gauss elimination method

$$
\begin{aligned}
& 3 x+4 y+5 z=18 \\
& 2 x-y+8 z=13 \\
& 5 x-2 y+7 z=20
\end{aligned}
$$

16. Write notes on Binomial and Poisson's distributions
17. If n is a positive integer and $J_{n|x|}$ is the Bessel function of $n^{\text {th }}$ order, prove that

$$
J_{n(x)}=\frac{1}{\pi} \quad \int_{0}^{\pi} \operatorname{Cos}(n \theta-x \operatorname{Sin} \theta) d \theta
$$

18. Show that $i_{i j k} \in_{p q k} i \delta_{i p} \delta_{j q}-\delta_{i q} \delta_{j p}$, where $i_{i j k}$ is the Levi-civita symbol (3 x 4 $=12$)

Part D (Essay)

(Answer all question. Each question carries 12 Marks)
19. (a) State and prove Stokes theorem in vector analysis. Verify Stoke's theorem for the vector field $A=(3 x-2 y) \mathbf{i}+x^{2} z \mathbf{j}+y^{2}(z+1) \mathbf{k}$ for a plane rectangular area with vertices $(0,0)$, $(1,0),(1,2),(0,2)$ in the $x-y$ plane

OR

b) Obtain the general expressions for vector operators in curvilinear coordinates and hence find the Laplacian in circular cylindrical coordinates.
20. (a)Explain matrix diagonalisation. Diagonalise the following matrix $\left[\begin{array}{ccc}\cos \theta & -\sin \theta & 0 \\ \sin \theta & \cos \theta & 0 \\ 0 & 0 & 1\end{array}\right]$

OR

(b)Find the characteristic equation of the matrices

$$
\left[\begin{array}{ccc}
1 & 2 & 3 \\
2 & -1 & 4 \\
3 & 1 & 1
\end{array}\right] \text { and }\left[\begin{array}{ccc}
2 & -1 & 1 \\
-1 & 2 & -1 \\
1 & -1 & 2
\end{array}\right] \text { and verify Cayley Hamilton equation for them. }
$$

Also find the inverse of each.
21. (a) What are Christoffel symbols? Show that they do not form the components of a tensor Or
(b) Obtain the differential equation of a geodesic in a given space.
22. (a) Obtain the orthogonality relation for the Hermite polynomials

$$
\int_{-\infty}^{+\infty} e^{-x^{2}} H_{m}(x) H_{n}(x) d x=\sqrt{ } \pi 2^{n} n!
$$

(b) Obtain the series solutions of Legendre differential equation by Frobenius method

