Rea No	Name:
reginominiti	

MSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4: MATHEMATICS

COURSE: P4MATT20EL: CODING THEORY

Time: Three Hours

Max. Marks: 75

PART A

(Answer **any five** of the following. Each question carries 2 marks)

- 1. What is the minimum weight of the Hamming [7, 4] code? Is this Hamming [7, 4] code self orthogonal.
- 2. Find the parity check matrix for the (4, 2) ternary code with generator

matrix $\begin{bmatrix} 1011\\0121 \end{bmatrix}$

- 3. Prove that (23, 12, 7) binary code is perfect
- 4. If C is a binary (n, $\frac{n-1}{2}$) self orthogonal code, for odd n, then prove that

 c^{\perp} is (n, $\frac{n+1}{2}$) code generated by $c \wedge h$.

5. If f(x) is a poly nominal with Coefficients in GF (P^r) them prove that $f(x^{pr}) = i$

- 6. Show that x^2 -2 is irreducible over GF (5).
- 7. Which binary cyclic codes of length 7 are self orthogonal?
- 8. Define a Vander Monde determinant and find its value. (2 X 5 = 10)

PART B

(Answer any five of the following. Each question carries 5 marks)

- 9. Prove that the dual of an MDS Code C and is again an MDS Code.
- 10. If d is even prove that A (n-1, d-1) = A (n, d).
- 11. Describe the binary (24, 12) Golay Code. Show that it is self orthogonal, doubly even and triple error correcting.
- 12. Using double error correcting BCH Code decode the received vector y = (1,1,1,0, 1,1,1,1,1,1,1,1,1,1).
- 13. In a field F of characteristic P show that $(x \pm y)p^m = x^{p^m} \pm y^{p^m}$
- 14. Let m(x) be the minimal polynomial of an element α in a finite field GF
- (P^r) then prove

the following

- 1) m(x) is irreducible over GF (P)
- 2) If α is a root of f(x) with coefficients in GF (P) then m(x)/f(x)
- 3) $m(x)/x^{p^{r}}-x$

- 4) If m(x) is primitive then its degree is r. In every case degree of m (x) \leq r.
- 15. If the degree of g (x) is n-k. Prove that $C = \langle g(x) \rangle$ has dimension k.

16. Define a Reed Solomon Code of designed distance d. Prove that it has d as its actual

minimum weight.

 $(5 \times 5 = 25)$

PART C

Answer either **Part A or Part B**. Each question carries 10 marks

- a) Give a parity check matrix for the Hamming [7, 4] Code. Using Hamming decoding decode the messages (1,1,1,0,0,1,0) and (0,0,0, 1,1,1,0). Define the weight distribution of a Code. Find the weight distribution of the hamming (7, 4) Code.
 - b) Prove that the packing radius **t** has the following properties.

i. If C has minimum weight d, t = i]

- ii. t is the largest among the numbers S so that each vector of weight \leq S is a unique coset leader.
- 18 a) Prove that the poly nomial $x^4 + x^3 + 1$ is irreducible over GF (2). Construct a field of

order 16 using this polynomial and perform the following operations in this field.

i. 1001.1011 + 0101 \div 1100

ii. (1110)^{1/2} + 1101

b)Every finite field has p^m elements for some prime P.

19. a) Prove that every cyclic (n, k) Code C has an idempotent generator e(x). Further the

matrix M formed by e(x) and its next (k-1) cyclic shifts is a generator matrix for C.

- b)Let C₁ and C₂ be cyclic codes with generator polynomials $g_1(x) \wedge g_2(x)$ and idempotent generators $e_1(x)$, and $e_2(x)$. Then C₁ \cap C_{2 has as generator polynomial $l.c.m.(g_1(x),g_2(x))$ and as idempotent generator $e_1(x)e_2(x)$ and C₁ + C_{2 has as generator polynomial $g.c.d.(g_1(x),g_2(x))$ and as idempotent generator $e_1(x)+e_2(x)-e_1(x)e_2(x)$.}}
- 20. a) 1. Prove that the minimum weight of a BCH Code C of designed distance δ is atleast $\delta.$
 - 2. If C is a cyclic code over F whose generator polynomial g (x) has roots β , β^2 ,..... $\beta^{\delta^{-1}}$ in some extension field of F then prove that minimum weight C is $\geq \delta$.

b) Let f(x) be a polynomial with coefficients in GF (q) and let S be the set of its roots in some field $F = GF(q^m)$ Then prove that weight of $f(x) \ge$ the size of any set A in a set 1, of students of F that is independent with respect to S.

 $(4 \times 10 = 40)$
