MSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4: MATHEMATICS COURSE: P4MATT2OEL: CODING THEORY

Time: Three Hours
Max. Marks: 75

PART A

(Answer any five of the following. Each question carries 2 marks)

1. What is the minimum weight of the Hamming [7, 4] code? Is this Hamming [7,4] code self orthogonal.
2. Find the parity check matrix for the $(4,2)$ ternary code with generator matrix $\left[\begin{array}{l}1011 \\ 0121\end{array}\right]$
3. Prove that $(23,12,7)$ binary code is perfect
4. If C is a binary $\left(\mathrm{n}, \frac{\mathrm{n}-1}{2}\right)$ self orthogonal code, for odd n , then prove that c^{\perp} is $\left(\mathrm{n}, \frac{n+1}{2}\right)$ code generated by $c \wedge h$.
5. If $f(x)$ is a poly nominal with Coefficients in GF $\left(P^{r}\right)$ them prove that $f\left(x^{\text {pr }}\right)=$ i
6. Show that $x^{2}-2$ is irreducible over GF (5).
7. Which binary cyclic codes of length 7 are self orthogonal?
8. Define a Vander Monde determinant and find its value.
($2 \times 5=10$)

PART B

(Answer any five of the following. Each question carries 5 marks)
9. Prove that the dual of an MDS Code C and is again an MDS Code.
10. If d is even prove that $A(n-1, d-1)=A(n, d)$.

11 . Describe the binary $(24,12)$ Golay Code. Show that it is self orthogonal, doubly even and triple error correcting.
12. Using double error correcting BCH Code decode the received vector $y=(1,1,1,0,1,1,1,1,1,1,1,1,1,1,1)$.
13. In a field F of characteristic P show that $(x \pm y) p^{m}=x^{p^{p^{m}}} \pm y^{p^{m}}$
14. Let $m(x)$ be the minimal polynomial of an element α in a finite field GF
$\left(P^{r}\right)$ then prove
the following

1) $m(x)$ is irreducible over GF (P)
2) If α is a root of $f(x)$ with coefficients in GF (P) then $m(x) / f(x)$
3) $m(x) / x^{p^{\prime}}-x$
4) If $m(x)$ is primitive then its degree is r. In every case degree of $m(x)$ $\leq r$.
15. If the degree of $g(x)$ is $n-k$. Prove that $C=<g(x)>$ has dimension k.
16. Define a Reed Solomon Code of designed distance d. Prove that it has d as its actual
minimum weight.
$(5 \times 5=25)$

PART C

Answer either Part A or Part B. Each question carries 10 marks
17. a) Give a parity check matrix for the Hamming [7, 4] Code. Using Hamming decoding decode the messages ($1,1,1,0,0,1,0$) and ($0,0,0$, $1,1,1,0)$. Define the weight distribution of a Code. Find the weight distribution of the hamming $(7,4)$ Code.
b) Prove that the packing radius t has the following properties.
i. If C has minimum weight $d, t=i$]
ii. t is the largest among the numbers S so that each vector of weight $\leq S$ is a unique coset leader.

18 a) Prove that the poly nomial $x^{4}+x^{3}+1$ is irreducible over GF (2). Construct a field of order 16 using this polynomial and perform the following operations in this field.
i. $1001.1011+0101 \div 1100$
ii. $(1110)^{1 / 2}+1101$
b) Every finite field has p^{m} elements for some prime P.
19. a) Prove that every cyclic (n, k) Code C has an idempotent generator $e(x)$. Further the
matrix M formed by $e(x)$ and its next ($k-1$) cyclic shifts is a generator matrix for C .
b) Let C_{1} and C_{2} be cyclic codes with generator polynomials $g_{1}(x) \wedge g_{2}(x)$ and idempotent generators $e_{1}(x)$, and $e_{2}(x)$. Then $\mathrm{C}_{1} \cap \mathrm{C}_{2}$ has as generator polynomial l.c.m. $\left(g_{1}(x), g_{2}(x)\right)$ and as idempotent generator $e_{1}(x) e_{2}(x)$ and $\mathrm{C}_{1}+\mathrm{C}_{2}$ has as generator polynomial g.c.d. $\left(g_{1}(x), g_{2}(x)\right)$ and as idempotent generator $e_{1}(x)+e_{2}(x)-e_{1}(x) e_{2}(x)$.
20. a) 1. Prove that the minimum weight of a $B C H$ Code C of designed distance δ is atleast δ.
2. If C is a cyclic code over F whose generator polynomial $g(x)$ has roots $\beta, \beta^{2}, \ldots \ldots \beta^{\delta-1}$ in some extension field of F then prove that minimum weight C is $\geq \delta$.
b) Let $f(x)$ be a polynomial with coefficients in GF (q) and let S be the set of its roots in some field $F=G F\left(q^{m}\right)$ Then prove that weight of $f(x) \geq$ the size of any set A in a set 1 , of students of F that is independent with respect to S.
$(4 \times 10=40)$

