Name: \qquad Reg. No

MSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4: MATHEMATICS
 COURSE: P4MATT19EL: THEORY OF WAVELETS

Time: Three Hours
Max. Marks: 75

PART A

Answer any five questions. Each carries 2 marks

1. What is the necessary and sufficient condition for $\left\langle R_{k} W_{k=0}^{N-1}\right.$ is an orthonormal basis for $\quad l^{2}\left(z_{N}\right)$ where $w \in l^{2}\left(z_{N}\right)$.
2. Distinguish between down sampling and upsampling operator with examples.
3. Explain " Wavelets" on Z_{N}
4. Suppose N is divisible by 2 ,and ${ }^{u_{1} \in l^{2}\left(Z_{N}\right) \text {. Define } u_{2} \in l^{2}\left(Z_{N / 2}\right) b}$ $u_{2}(n)=u_{1}(n)+u_{1}\left(n+\frac{N}{2}\right)$, then prove that for all m,thefourier transforms $u_{2}(m)=u_{1}(2 m)$.
5. Comment the statement $I^{2}(Z)$ is a Hilbert space.
6. Prove that the trigonometric system is an orthonormal set in $L^{2}([-\pi, \pi))$.
7. Define Pth stage wavelet syatemfor $l^{2}(Z)$.
8. Prepare a short note about translation bounded linear operator on ${ }^{L^{2}([-\pi, \pi))}$ with an example.
$(2 \times 5=10)$

PART B

Answer any five questions. Each carries 5 marks
9. Prove that the Shannon wavelet basis is first stage wavelet basis for $l^{2}\left(Z_{N}\right)$.
10. Suppose $u=\{\sqrt{2}, \sqrt{2}, 0,0\rangle$ and $v=\{0,0, \sqrt{2}, \sqrt{2}\}$. Prove that $\left\{v, R_{2} v, u, R_{2} u\right\}$ is an orthonormal basis for ${ }^{2}\left(Z_{4}\right)$.
11. If N is divisible by 2^{l} and $x, y, w \in l^{2}\left(Z_{N / 2}^{l}\right)$ and ${ }^{z \in l^{2}\left(Z_{N}\right)}$, then prove that $D^{\prime}(z) * w=D^{\prime}(z * w)$ where ${ }^{D^{\prime}(z)}$ means the composition of D with itself $l_{\text {times }}$ applied to z.
12. Give an algorithm for constructing a $\mathrm{P}^{\text {th }}$ stage wavelet basis for $I^{2}\left(Z_{N}\right)$.
13. Suppose $f \in L^{1}([-\pi, \pi))$ and $\left\langle f, e^{i n \theta}\right\rangle=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(\theta) e^{-i n \theta} d \theta=0$ for all $n \in Z$, then prove that

$$
f(\theta)=0 \text { a.e }
$$

14. Prove that $L^{2}\left([-\pi, \pi \mid)<L^{1}(\mid-\pi, \pi)\right)$ with the inclusion can be strict
15. Define Complete ortthonormal system in a Hilbert space H.Also explain Parseval's relation and Plancherel's formula of a complete orthonormal system in a Hilbert space H .
16. What you meant by system matrix of u, v where $u, v \in l^{2}(Z)$. Discuss the importance of system matrix in a complete orthonormal set in $l^{2}(Z)$.
$(5 \times 5=25)$

PART C

Answer all questions each carries 10 marks
17. A. (i) Define Conjugate reflection of $w \in l^{2}\left(Z_{N}\right)$. Also derive any one of its property.
(ii) Let ${ }^{z, w, u, v \in l^{2}\left(Z_{N}\right)}$, then prove that $\left\langle R_{k} z, R_{j} w\right\rangle=\left\langle z, R_{j-k} w\right\rangle=\left\langle R_{k-j} z, w\right\rangle_{\text {for }}$ any $k, j \in Z$

OR

B. Suppose $M \in N, N=2 M$ and $\omega \epsilon^{2}\left(Z_{N}\right)$ Then $\left\langle R_{2 k}\right\}_{K=0}^{M-1}$ is an orthonormal set if and only if

$$
|w(n)|^{2}+|w(n+M)|^{2}=2 \quad \text { for } n=0,1,2, \ldots \ldots, M-1
$$

18. A (i) $\operatorname{Suppose}_{z, w} \in l^{2}\left(Z_{N}\right)$. Prove that $(z * w)=\tilde{z} * \widetilde{w}$
(ii) Suppose ${ }^{z \in l^{2}\left(Z_{N / 2}\right)}$ where N is even. Prove that $(u(z))=u i^{i}$ with standard notation.

OR

B. (i) If N is divisible by 2^{p}, define a $\mathrm{P}^{\text {th }}$ stage filter sequence. Find the output of the analysis
phase of the pth stage wavelet filter bank.
(ii) Explain orthogonol direct sum of inner product space X.
19. A. Let H be Hilbert space and $\left\{a_{j}\right\}_{j \in Z}$ be an orthonormal set in H . State and prove a necessary and sufficient condition for this set to be complete in H .

OR
B. Suppose $T: L^{2}\left([-\pi, \pi \mid) \rightarrow L^{2}([-\pi, \pi \mid)\right.$ is a bounded translalation - invariant linear transformation. Then prove that each $m \in Z$, there exists $\lambda_{m} \in C$ such that

$$
T\left(e^{i m \theta}\right)=\lambda_{m} e^{i m \theta}
$$

20. A. Define the convolution of z and w^{w} where $z, w \in l^{2}(Z)$. Suppose that $z \in l^{2}(Z)$ and $w \in l^{1}(Z)$ then prove that ${ }^{z * w \in l^{2}(Z)}$ and $\|z * w\| \sharp\|w\|_{1}\|z\|$. OR
B. Develop Harr wavelets on Z
$(10 \times 4=40)$
