Name -	Name:	Reg. No
---	-------	---------

MSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4: MATHEMATICS

COURSE: P4MATT19EL: THEORY OF WAVELETS

Time: Three Hours Max. Marks: 75

PART A

(Answer any five questions. Each carries 2 marks)

1. What is the necessary and sufficient condition for ${R_k w]}_{k=0}^{N-1}$ is an orthonormal basis for

$$l^2(\mathbf{z}_N)$$
 where $w \in l^2(\mathbf{z}_N)$.

- 2. Distinguish between down sampling and upsampling operator with examples.
- 3. Explain "Wavelets" on $Z_{\scriptscriptstyle N}$
- 4. Suppose N is divisible by 2,and $u_1 \in l^2(Z_N)$. Define $u_2 \in l^2(Z_{N/2})$ by $u_2(n) = u_1(n) + u_1(n + \frac{N}{2})$

then prove that for all m,thefourier transforms $u_2(m) = u_1(2m)$.

- 5. Comment the statement; $l^{2}(Z)$ is a Hilbert space.
- 6. Prove that the trigonometric system is an orthonormal set in $L^{2}([-\pi,\pi))$
- 7. Define Pth stage wavelet systemfor $l^2(Z)$.
- 8. Prepare a short note about translation bounded linear operator on $L^{2}([-\pi,\pi))$ with an example.

 $(2 \times 5 = 10)$

PART B

(Answer any five questions. Each carries 5 marks)

- 9. Prove that the Shannon wavelet basis is first stage wavelet basis for $l^2(Z_N)$.
- 10. Suppose $u = \sqrt{2}, \sqrt{2}, 0, 0$ and $v = [0, 0, \sqrt{2}, \sqrt{2}]$. Prove that $[v, R_2 v, u, R_2 u]$ is an orthonormal basis for $l^2(Z_4)$.
- 11. If N is divisible by 2^l and $x,y,w\in l^2(Z^l_{N/2})$ and $z\in l^2(Z_N)$, then prove that $D^l(z)*w=D^l(z*w)$ where $D^l(z)$ means the composition of D with itself l times applied to z.
- 12. Give an algorithm for constructing a Pth stage wavelet basis for $l^2(Z_N)$.

13. Suppose $f \in L^1([-\pi,\pi))$ and $\langle f,e^{\mathrm{i} n\theta} \rangle = \frac{1}{2\pi} \int_{-\pi}^{\pi} f(\theta)e^{-\mathrm{i} n\theta}d\theta = 0$ for all $n \in \mathbb{Z}$, then prove that

$$f(\theta) = 0$$
 a.e

- 14. Prove that $L^2([-\pi,\pi]) < L^1([-\pi,\pi])$ with the inclusion can be strict
- 15. Define Complete ortthonormal system in a Hilbert space H.Also explain Parseval's relation and Plancherel's formula of a complete orthonormal system in a Hilbert space H.
- 16. What you meant by system matrix of u,v where $u,v \in l^2(Z)$. Discuss the importance of system matrix in a complete orthonormal set in $l^2(Z)$.

$$(5 \times 5 = 25)$$

PART C

(Answer **all** questions each carries 10 marks)

- 17. A. (i) Define Conjugate reflection of $w \in l^2(Z_N)$. Also derive any one of its property.
- (ii) Let $z, w, u, v \in l^2(Z_N)$, then prove that $\langle R_k z, R_j w \rangle = \langle z, R_{j-k} w \rangle = \langle R_{k-j} z, w \rangle$ for any $k, j \in Z$

OR

B. Suppose M∈N, N= 2M and $\omega \in l^2(Z_N)$ Then $\left[R_{2k}\right]_{K=0}^{M-1}$ is an orthonormal set if and only if

$$|w(n)|^2 + |w(n+M)|^2 = 2$$
 for $n = 0,1,2,...,M-1$

- 18. A (i) Suppose $z, w \in l^2(Z_N)$. Prove that $(z*w) = \tilde{z}*\tilde{w}$
- (ii) Suppose $z \in l^2(Z_{N/2})$ where N is even. Prove that $(u(z)) = u \cdot u$ with standard notation.

OR

- B. (i) If N is divisible by 2^p , define a Pth stage filter sequence .Find the output of the analysis phase of the pth stage wavelet filter bank.
- (ii) Explain orthogonal direct sum of inner product space X.
- 19. A. Let H be Hilbert space and $a_j \mid_{j \in \mathbb{Z}} be$ an orthonormal set in H. State and prove a necessary and sufficient condition for this set to be complete in H.
- B. Suppose $T:L^2([-\pi,\pi])\to L^2([-\pi,\pi])$ is a bounded translalation invariant linear transformation. Then prove that each $m\in Z$, there exists $\lambda_m\in C$ such that

$$T(e^{im\theta}) = \lambda_m e^{im\theta}$$

20. A. Define the convolution of z and w where $z, w \in l^2(Z)$. Suppose that $z \in l^2(Z)$ and

 $w \in l^1(Z)$ then prove that $z * w \in l^2(Z)$ and $||z * w|| \le ||w||_1 ||z||_2$.

B. Develop Harr wavelets on Z

 $(4 \times 10 = 40)$
