Reg. No.....Name:

MSc DEGREE END SEMESTER EXAMINATION MARCH 2016 SEMESTER - 4 MATHEMATICS

COURSE: P4MATT16: SPECTRAL THEORY

Time: Three Hours

Max. Marks: 75

PART-A

(Answer **any five** of the following. Each question carries 2 marks)

- 1. Prove that strong convergence implies weak convergence with the same limit
- 2. Prove that a contraction T on a metric space is a continuous mapping
- 3. Find the eigenvalues of the matrix $\begin{bmatrix} a & b \\ -b & a \end{bmatrix}$ where a, b are real with $b \neq 0$
- 4. Show that the set of all linear operators on a vector space into itself forms an algebra
- 5. Prove that every compact linear operator T: $X \rightarrow Y$ is continuous
- 6. Define a symmetric linear operator
- 7. Let T: $H \rightarrow H$ be a bounded self adjoint linear operator on a compact Hilbert space H. Prove that all the eigen values of T are real.
- 8. Define a positive operator. If $T_1 \le T_2$ then prove that $\alpha T_1 \le \alpha T_2$, where α is a scalar.

 $(2 \times 5 = 10)$

PART B

(Answer **any five** of the following. Each question carries 5 marks)

- 9. Prove that the strongly operator convergent always implies weakly operator convergent but the converse is not generally true
- 10.Prove that closedness does not implies boundedness of a linear operator
- 11.Prove that two matrices representing the same linear operator T on a finite dimensional normed space relative to any two bases for X are similar
- 12.Prove that if X \neq {0} is a complex Banach space and T ϵ B(X, X), then σ (T) $\neq \varphi$.
- 13.Let T: $X \rightarrow X$ be a compact linear operator and S: $X \rightarrow X$ be a bounded linear operator on a normed space X then the operators TS and ST are compact.
- 14. State and prove Hellinger-Toeplitz Theorem
- 15.Prove that the spectrum $\sigma(T)$ of a bounded self adjoint linear operator T:H \rightarrow H on a complex Hilbert space H is real

16. Let $P_1 \wedge P_2$ be projections on a Hilbert space H. Then prove that $P = P_1 + P_2$ is a projection on H if and only if $Y_1 = P_1(H)$ and $Y_2 = P_2(H)$ are orthogonal.

 $(5 \times 5 = 25)$

PART C

(All questions below are compulsory. Answer (A) or (B). Each question carries 10 marks)

17.(A)(a) Let (x_n) be a weakly convergent sequence in a normed space X, say $x_n w \ge x$.

Then the sequence ($||x_n||$) is bounded

- (b) Let $(T_n) \in B(X,Y)$ where X is a Banach space and Y is a normed space. If (T_n) is strongly operator convergent with limit T, then prove that T ϵ B(X,Y)
- (B) State and prove Closed Graph Theorem
- 18.(A) State and prove Spectral Mapping theorem for polynomials
 - (B)(a) Prove that the resolvent $R_{\lambda}(T)$ of a bounded linear operator T: X \rightarrow X on a

complex Bananch space is locally holomorphic on $\rho(T)$.

(b) Let A be a complex Banach Algebra with identity e. If x ε A satisfies ||x|| < 1,

then prove that e-x is invertible and $(e-x)^{-1} = e + \sum_{i=1}^{\infty} x^{i}$

19.(A) Let $T:X \rightarrow Y$ be a linear operator, where X and Y are normed spaces. If T is a compact linear operator then prove that its adjoint operator $T^*: Y' \rightarrow X'$ is also a compact linear operator

(B) (a) Let B be a subset of a metric space X. If B is relatively compact then prove that B is totally bounded

(b) Let $T:X \rightarrow X$ be a compact linear operator on a Banach space X. Then prove that

every spectral value $\lambda \neq 0$ of T is an eigenvalue of T

20.(A) If two bounded self adjoint linear operators S and T on a Hilbert space H are

positive and commute(ST=TS) then their product ST is positive

(B) Let (P_n) be a monotonic increasing sequence of projections P_n defined on a Hilbert

space H. Then prove that

(a) P projects H onto P(H) = $in = 1i \propto P_n(H)i$

(b) P has the null space N(P) = $in = 1i \otimes N(P_n)$

 $(10 \times 4 = 40)$