B.Sc. DEGREE END SEMESTER EXAMINATION OCTROBER 2016 SEMESTER - 1: MATHEMATICS FOR BSC MATHEMATICS, COMPUTER APPLICATIONS AND BCA
 COURSE - 15U1CRMAT1-15U1CRCMT1-16U1CPCMT1: FOUNDATION OF MATHEMATICS

Common for Regular (2016 Admission) \& Supplementary / Improvement (2015 Admission)
Time: Three Hours
Max Marks: 75

Part A
 Short Answer Questions. Answer all questions.
 Each Question carries 1 mark

1. Define "ceiling of x " where X is a real number.
2. Given $f: \mathbf{Z} \rightarrow \mathrm{N}$ is defined by $\left\{\begin{array}{cc}f(x)= & 2 x-1 \text {, if } \mathrm{x}>0 \\ -2 \mathrm{x} & \text {, if } \mathrm{x} \leq 0\end{array}\right.$

Find $f^{-1}(x)$
3. Prove or disprove that $[x+y]=[x]+[y]$ for all real numbers x and y.
4. Evaluate $\sum_{i=1}^{3} \square \sum_{j=1}^{2} i j$
5. Define factorial function.
6. Negate the statement $\forall x \exists y[p(x) \vee q(y)]$
7. Define "Inverse of the conditional statement": $p \rightarrow q$.
8. State Fundamental theorem of Arithmetic.
9. Prove that 284 and 220 are amicable numbers.
10. If $\mathrm{n}=P_{1}^{m 1} P_{2}^{m 2} P_{3}^{m 3} \ldots .$. then obtain φ

Where $\mathrm{P}_{1}, \mathrm{P}_{2}, \mathrm{P}_{3}$ are distinct primes.
$(1 \times 10=10)$

Part B

Brief Answer Questions. Answer any eight questions. Each Question carries 2 marks
11. Suppose $A=\{x, y, z\}$. Obtain the power set of A.
12. Let $\boldsymbol{f}: \mathbf{R} \rightarrow \mathbf{R}$ be defined by $\mathbf{f}(\mathbf{x})=\mathbf{x}^{\mathbf{2}}+\mathbf{2 x}$.

Find (fof)2 and (fof)3.
13.

$$
>0
$$

Given $t: \mathbf{Z} \rightarrow \mathrm{N}$ is defined by $f(x)=2 \mathrm{x}-1$, if x

$$
-2 x \quad, \text { if } x \leq 0
$$

Prove that f is one- to -one
14. Define "Partition of a set S".

Write down two possible partitions of the set $S=\{a, b, c, d, e, f, g, h\}$.
15. Show that $(\mathbf{p} \rightarrow \mathbf{q}) \wedge(\mathbf{q} \rightarrow \nrightarrow \mathbf{R})$ and $(p \quad q)$ are logically equivalent.
16. Find the smallest number with 10 divisors.
17. If $n=a b$ where $(a, b)=1$, Show that $\varphi(a, b)=\varphi(a) \varphi(b)$.
18. If N be any integer, \mathbf{n} the number of its divisors and P the product of them all. Prove that $\mathrm{N}^{\mathrm{n}}=\mathrm{P}^{2}$
19. Find the g.c.d of 58 and 86 and express it as a linear combination of the above two integers
20. Negate the following Statements
(1) $(\forall x \varepsilon A)(x+2=7)$
$(\exists x \varepsilon A)(x+2 \geq 7)$

Part C

Short Essay type Questions. Answer any five questions.
Each Question carries 5 marks
21. Compute the value of $\sum_{k=50}^{100} k^{2}$
22. Let \mathbf{A} be a set of non zero integers and let * be the relation on $\mathrm{A} \times \mathrm{A}$ defined by (a, b) * (c, d) whenever $\mathrm{ad}=\mathrm{bc}$. Prove that * is an equivalence relation.
23. Find the join and meet of the zero-one matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] 1 \text { and } B=\left[\begin{array}{cc}
0 & 1 \\
1 & 1
\end{array}\right]
$$

24. Show that $p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$.
25. If $p \rightarrow q$ and $q \rightarrow r$ then show that $(p \rightarrow r)$ is a tautology.
26. Show that $3^{2 n+1}+2^{n+2}=M(7)$
27. Prove that cube of any number is of the form 7 m or $7 \mathrm{~m} \pm 1$ $(5 \times 5=25)$

Part D

(Essay). Answer any two questions. Each Question carries 12 marks 28.

Prove that that
(A C) $\cap(C-B)=\varphi$ analytically where $A, B \& C$ are sets. Also verify graphically.
29.
$x R_{5} y$ if
$x \equiv y(\bmod 5)$. Show that R_{5} is an equivalence relation

Give a proof by contradiction of the theorem " if \mathbf{n}^{2} is even then, n is even ".
30.
(a) State and prove Wilson's theorem.
(b) Show that
$18!+1 \equiv 0(\bmod 23)$
$(12 \times 2=24)$

