BSc DEGREE EXAMINATION - OCTOBER 2015

SEMESTER - 1: MATHEMATICS CORE COURSE FOR BSC MATHEMATICS /
BSC COMPUTER APPLICATION .
COURSE - 15U1CRMAT1-15U1CRCMT1: FOUNDATION OF MATHEMATICS

Part A

Short Answer Questions. Answer all questions. Each Question carries 1 mark

1. Define " floor of x " where x is a real number.
2. Given $f: \begin{gathered}\mathbf{Z} \rightarrow \mathrm{N} \\ -2 \mathrm{is} \text { defined by } \quad \text {, if } \mathrm{x} \leq 0\end{gathered} \quad\{(x)=2 \mathrm{x}-1$, if $\mathrm{x}>0$ Find $f^{-1}(x)$
3. Prove or disprove that $[x+y]=[x]+[y]$ for all real numbers x and y.
4. Evaluate $\sum_{i=1}^{4} \square \sum_{j=1}^{3} i j$
5. Define factorial function.
6. Negate the statement $\exists x \forall \mathrm{y}[\mathrm{p}(\mathrm{x}, \mathrm{y}) \rightarrow \mathrm{q}(\mathrm{x}, \mathrm{y})]$
7. Define, converse of the conditional statement: $p \rightarrow q$.
8. State Unique Factorization theorem
9. Define Amicable numbers
10.If $a \equiv b(\bmod n)$ and $a_{1} \equiv b_{1}(\bmod n)$. Show that $a a_{1} \equiv$ $\mathrm{bb}_{1}(\bmod \mathrm{n})$.
$(1 \times 10=$
10)

Part B

Brief Answer Questions. Answer any eight questions. Each Question carries 2 marks
11. Suppose $S=\{1,2,3\}$. Write down the power set of S.
12. Let $t: R \rightarrow R$ be defined by $f(x)=x^{2}+2 x$

Find (fof)2 and (fof)3.
13. Given $f: \mathbf{Z} \rightarrow \mathrm{N}$ is defined by $\left\{\begin{array}{cc}f(x)= & 2 x-1, \text { if } \mathrm{x}>0 \\ -2 \mathrm{x} & , \text { if } \mathrm{x} \leq 0\end{array}\right.$

Prove that \mathbf{f} is one- to -one
14. Define "Partition of a set S".

Write down two possible partitions of the set $S=\{1,2,3,4,5,6,7,8\}$.
15. Show that $p \rightarrow q$ and $(\sim p \vee q)$ are logically equivalent.
16. Find the smallest number with 18 divisors.
17. If $n=a b$ where $(a, b)=1$, Show that $\varphi(a, b)=\varphi(a) \varphi(b)$.
18. Define perfect number. Give an example.
19. Show that \mathbf{a} and \mathbf{b} are relatively prime iff $\mathbf{1}$ is expressible as a liner combination of \mathbf{a} and \mathbf{b}.
20. Negate the following Statements
(1) $(\exists x \in A)(x+3<10)$
(2) $(\forall x \in A)(x+3 \geq 7)$
$(8 \times 2=16)$

Part C

(Short Essay type Questions). Answer any five questions. Each Question carries 5 marks
21. Compute the following
(a) $\sum_{j=0}^{5} j^{2}$
(b) $\sum_{k=4}^{8}(-1)^{k}$
22. Let \mathbf{A} be a set of non zero integers and let $*$ be the relation on $\mathrm{A} \times \mathrm{A}$ defined by $(\mathrm{a}, \mathrm{b}) *(\mathrm{c}, \mathrm{d})$ whenever $\mathrm{ad}=\mathrm{bc}$. Prove that $*$ is an equivalence relation.
23. Find the join and meet of the zero-one matrix

$$
A=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right] 0 \quad 1 \quad \text { and }\left[B=\begin{array}{ccc}
0 & 1 & 0 \\
1 & 1 & 0
\end{array}\right.
$$

24. If $p \rightarrow q$ and $q \rightarrow r$ then show that $(p \rightarrow r)$ is a tautology.
25. Show that $p \rightarrow(q \wedge r) \equiv(p \rightarrow q) \wedge(p \rightarrow r)$.
26. Show that $\mathbf{7}^{\mathbf{2 n + 1}}+\mathbf{1}=\mathbf{M}$ (8)
27. Show that every square is of the form 3 m or $3 m+1$
(5 x 5 $=25$)

Part D

(Essay). Answer any two questions. Each Question carries 12 marks
28.

If A, B, C and D are sets prove algebraically that
$(A \cap B) \times(C \cap D)=(A X C) \cap(B X D)$ Give an example to support this result.
29.

Let R_{5} be the relation on the set Z of integers defined by $\quad x R_{5} y$ if $X \equiv y(\bmod 5)$. Show that R_{5} is an equivalence relation on Z.
30.

Prove that $\sqrt{2}$ is irrational by giving a proof by contradiction
31.
(a) State and prove Fermat's Little theorem
(b) If \mathbf{p} is an odd prime and \mathbf{a} is prime to \mathbf{p} show that $\mathbf{a}^{(p-1) /}$ ${ }^{2} \equiv \pm 1(\bmod p)$

$$
(12 \times 2=24)
$$

