15U135

BSc DEGREE EXAMINATION - OCTOBER 2015

SEMESTER- 1: MATHS COMPLEMENTARY FOR B.SC PHYSICS / B.SC CHEMISTRY COURSE- 15U1CPMAT1: DIFFERENTIAL CALCULUS AND TRIGNOMETRY

Time: Three hours

Max. Marks: 75

Part A

Short Answer Questions. Answer all questions. Each question carries one mark.

1. Find
$$\lim_{x \to 1} \left(\frac{x^3 - 1}{x^2 - 1} \right)$$
.

2. State the Sandwich Theorem.

3. If
$$g(t) = \frac{1}{t^3}$$
, find $g'(\sqrt{3})$

4. Find left hand limit of the function u(x) at x=0,

where
$$u(x) = \begin{cases} 0, & x < 0 \\ 1, & x \ge 0 \end{cases}$$

where $u(x) = \begin{bmatrix} 1, & x \ge 0 \\ \vdots \end{bmatrix}$. 5. If f'(x) = g'(x) at each point x in (a, b) then f - g is ______

6. Write a chain rule formula to find $\frac{dz}{dt}$ for z = f(x, y), x = g(t), y = h(t)

7. Find
$$\frac{\partial f}{\partial x}$$
 if $(x, y) = \frac{2}{x^2 + y^2}$.

8. The period of sin x is _____

9. Write the relation connecting the circular sine function and hyperbolic sine function.

10. State De Moivre's Theorem.

 $(1 \times 10 = 10)$

Part B

Brief Answer Questions. Answer any eight questions. Each question carries two marks.

$$\lim_{x \to 0} \frac{\cos x - 1}{x}$$

11. Find $x \rightarrow 0$

- 12. Find the parametrization of the line segment with end points (-2,1) and (3,5)
- 13. If $y = 2u^3$, u = 8x-1, then find dy/dx.

14. If $x + \sin y = xy$, find dx

- 15. Find the function f(x) whose derivative is 2x-1 and passing through (0, 0).
- 16. If z is a function in x and y, find $\frac{\partial z}{\partial x}$, where $yz-\ln z = x + y$. 17. Express $\frac{\partial w}{\partial r}$ in terms of r where $w = x^2 + y^2$, x = r s, y = r + s.
- 18. Show that $\sin 5\theta = 5\sin \theta 20\sin^3 \theta + 16\sin^5 \theta$.
- 19. Prove that $\cosh 2x = \cosh^2 x + \sinh^2 x$.

20. If x is real show that $\sinh^{-1}x = \log \left(x + \sqrt{x^2 + 1}\right)$

 $(2 \times 8 = 16)$

Part C

Short Essay Type Questions. Answer any five questions. Each question carries 5 marks.

21. Find a $\delta > 0$, to show that $\lim_{x \to 5} \sqrt{x-1} = 2$ that works for $\varepsilon = 1$

- 22. Find the equation of the tangent and the normal to the curve $x^3 + y^3 9xy = 0$ at (2,4)
- 23. State and prove Mean Value Theorem.

24. Evaluate
$$\frac{dw}{dt}$$
 at $t=3$: where $w=\frac{x}{z}+\frac{y}{z}$, $x=\cos^2 t$, $y=\sin^2 t$, $z=\frac{1}{t}$

25. Prove that if
$$y^3 - 3ax^2 + x^3 = 0$$
, then $\frac{d^2y}{dx^2} + 2\frac{a^2x^2}{y^5} = 0$

26. Separate $\tan^{-1}(x+iy)$ into real and imaginary parts.

27. If
$$sin(A + iB) = x + iy$$
, show that

$$\frac{x^2}{cosh^2 B} + \frac{y^2}{sinh^2 B} = 1 \qquad \frac{x^2}{sin^2 A} - \frac{y^2}{cos^2 A} = 1$$
.

 $(5 \times 5 = 25)$

Part D

Essay. Answer **any two** questions. Each question carries **12** marks.

28. a) Differentiate $f(x) = x^{-1}$ and find where does the curve have slope -1

- b) Prove that if f has a derivative at x = c, then f is continuous at x = c.
 - Is the converse true? Give an example.
- 29. Find the critical points of $f(x) = x^3 12x 5$. Identify the intervals on which f is increasing and decreasing. Find the local maximum and minimum values of the function.

30. a) Verify mixed derivative theorem for
$$f(x, y) = \left(\frac{xy}{x+y}\right)$$
.

2/3

b) If
$$z = e^{x} (x \cos y - y \sin y)$$
, prove that $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$
31. Sum the series
 $\cos \theta + \frac{c^2 \sin 2\theta}{2} + \frac{c^3 \sin 3\theta}{3} + \dots + where |c| < 1$

$$(12 \times 2 = 24)$$
