M. Sc. DEGREE END SEMESTER EXAMINATION APRIL 2017 SEMESTER - 2: PHYSICS COURSE: 15P2PHYT06; QUANTUM MECHANICS - I
(For Supplementary - 2015 Admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer all questions. Each question carries 1 Mark

1. The probability that x lies between x and $x+d x$ is $P(x) d x=a e^{-a x} d x$, where $a<x<\infty$ and $a>0$. Then the probability that x lies between $x_{1} \& x_{2}\left(x_{2}>x_{1}\right)$ is
a) $\left(e^{-a x_{1}}-e^{-a x_{2}}\right)$
b) $a\left(e^{-a x_{1}}-e^{-a x_{2}}\right)$
c) $e^{-a x_{2}}\left(e^{-a x_{1}}-e^{-a x_{2}}\right)$
d) $\frac{a}{2}\left(e^{-2 a x_{1}}-e^{-2 a x_{2}}\right)$
2. Given a wavefunction $\varphi(x)=\frac{N}{x^{2}+\square^{2}}$, where δ is a real constant. The normalization constant N is
a) $\sqrt{\frac{\square^{3}}{\square}}$
b) $\sqrt{\frac{2^{3}}{\square}}$
c) $\sqrt{\frac{2}{\square^{3}}}$
d) $\sqrt{\frac{\square}{\square^{3}}}$
3. For a harmonic oscillator with H the Hamiltonian operator and a^{+}the creation operator, $\left[a^{+}, \mathrm{H}\right]$ is
a) $\hbar \omega a$
b) $\hbar \omega a^{+}$
c) - $\hbar \omega a$
d) -
$\hbar \omega a^{+}$
4. L is angular momentum operator. Then $L X L$ is
a) Zero
b) $i \hbar L$
c) L_{x}
d) L_{y}
5. Electrons have half integral spin and they obey
a) B-E statistics
b) F-D statistics
c) M-B statistics
d) Neither of the above

PART B

Answer any five questions, each question carries 2 Marks
6. Show that the eigenvalues of a hermitian operator are real.
7. Explain the time-energy uncertainty relation
8. Why should time evolution operator be unitary
9. State and explain Ehrenfest's theorem
10. What are Pauli spin matrices
11. What are Clebsch-Gordon coefficients
12. Write down the condition under which we can apply the WKB approximation.
13. Degeneracy is removed by perturbation. Explain.

PART C

Answer any three questions. Each question carries 4 Marks

14. The expectation value of an antiHermitian operator is purely imaginary. Prove.
15. Distinguish between Schródinger and Heisenberg picture.
16.

Evaluate a) $\left[J_{+i, J_{-i u}}\right]$
b) $\left[J_{z}, J_{+i i}\right]$
17. What are connection formulae ? How they are used in barrier penetration problem.
18. Explain Zeeman effect using first order perturbation theory.
$(4 \times 3=12)$

PART D

Answer all questions. Each question carries 12 Marks
19. a) Calculate the expectation values of the operators x, x^{2}, p and p^{2} for a Gaussian wave packet.

OR
b) State and prove the properties of (1) Hermitian operator (2) Unitary operator
20. a) Explain "time evolution operator". Derive an expression for the operator OR
b) Obtain the expression for energy levels of a harmonic oscillator
21. a) Calculate the angular momentum matrices for J^{2}, J_{z}, J_{x} and J_{y} OR
b) Derive the fundamental commutation relations of angular momentum.
22. a) Discuss normal Zeeman effect in hydrogen atom based on degenerate perturbation theory.

OR
b) Using stationary state perturbation theory, discuss the anharmonic oscillator problem in detail.

