Name.....

Qcode 14P2043

M. Sc. DEGREE END SEMESTER EXAMINATION APRIL 2017

SEMESTER - 2: MATHEMATICS

COURSE: P2MATT09: PARTIAL DIFFERENTIAL EQUATIONS

(Supplementary for 2014 admission)

Time: Three Hours

Reg. No.....

Max. Marks: 75

PART A

Answer **any FIVE** questions; 2 marks each

1. Verify that the differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 - xy)dz = 0$ is integrable.

2. Find the integral surface of the equation $(2xy - 1)p + (z - 2x^2)q = 2(x - yz)$ which passes

through the line $x_0(s) = 1$, $y_0(s) = 0$ and $z_0(s) = s$.

3. Along every characteristic strip of the equation F(x, y, z, p, q) = 0, the function F(x, y, z, p, q) is a

constant.

4. Find a complete integral of the equation $(p^2 + q^2) y = qz$.

5. Define hyperbolic, parabolic and elliptic equations. Give example of a parabolic equation.

6. Reduce the equation $u_{xx} + x^2 u_{yy} = 0$ to a canonical form.

7. Write the Monge's equations for the nonlinear equation $y^2r - 2ys + t = p + 6y$.

8. Solve the one dimensional diffusion equation $\frac{\partial^2 z}{\partial x^2} = \frac{1}{k} \frac{\partial z}{\partial t}$ by separating the variables.

 $(2 \times 5 = 10)$

PART B

Answer **any FIVE** questions; 5 marks each

9. Find the surface which intersects the surfaces of the system z(x + y) = c(3z + 1)

orthogonally and which passes through the circle $x^2 + y^2 = 1$, z = 1.

10. Verify that the differential equation $(y^2 + yz)dx + (xz + z^2)dy + (y^2 - xy)dz = 0$ is integrable and

find its primitive.

=

11. Find a complete integral of the equation $p^2x + q^2y = z$ by Jacobi's method.

12. Show that a complete integral of $(u_x, u_y, u_z) = 0$ is u = ax + by + cz + dwhere f(a, b, c) = 0.

Hence find the complete integral of $u_x + u_y + u_z - u_x u_y u_z = 0$.

13. Find the solution of the equation
$$\frac{\partial^2 z}{\partial x^2} - \frac{\partial^2 z}{\partial y^2} = x - y$$

14. Reduce the equation $\frac{\partial^2 u}{\partial x^2} = x^2 \frac{\partial^2 u}{\partial y^2}$ to canonical form.

$$\frac{2u}{1}$$
 $\frac{1}{2}u$

15. Prove that for the equation $\frac{\partial x \partial y^{+}}{\partial x \partial y^{+}} = 0$, the Riemann function is $v(x, y; \alpha, \beta)$

 $J_0(\sqrt{(x-\alpha)(y-\beta)})$ where J_0 denote the Bessel's function of the first kind of order zero.

16. Derive the condition that the surface f(x, y, z) = c form a family of equipotential surfaces.

 $(5 \times 5 = 25)$

PART C

Answer either part (a) or part (b). Each carries 10 marks.

(A) Prove that the Pfaffian differential equation $\vec{X}.d\vec{r}=0$ is integrable if 17. and

only if \vec{x} .Curl $\vec{x} = 0$.

OR

(B)Prove that if $u_i(x_1, x_2, \dots, x_n, z) = c_i$ $(i = 1, 2, 3, \dots, n)$ are independent solutions of the equations $\frac{dx_1}{P_1} = \frac{dx_2}{P_2} = \cdots = \frac{dx_n}{P_n} = \frac{dz}{R}$, then the

relation $\emptyset(u_1, u_2, \dots, u_n) = 0$ in which the function \emptyset is

arbitrary, is a general

solution of the linear partial differential equation

$$P_1 \frac{\partial z}{\partial x_1} + P_2 \frac{\partial z}{\partial x_2} + P_3 \frac{\partial z}{\partial x_3} + \dots \dots + P_n \frac{\partial z}{\partial x_n} = R$$

18. (A) Find the complete integral of the equation $p^2x + qy = z$ and derive the equation of the

integral surface containing the line y = 1, x + z = 0 is a generator.

OR

(B) Describe Jacobi's method. Solve the

equation

 $z^2 + zu_z - u_x^2 - u_y^2 = 0$ by Jacobi's method.

19. (A) Solve the equation

$$\frac{\partial^2 z}{\partial x^3} - 2 \frac{\partial^3 z}{\partial x^2 \partial y} - \frac{\partial^3 z}{\partial x \partial y^2} + 2 \frac{\partial^3 z}{\partial y^3} = e^{x+y}$$

OR

(B)Reduce the equation $y \frac{2\partial^2 z}{\partial x^2} - 2xy \frac{\partial^2 z}{\partial x \partial y} + x^2 \frac{\partial^2 z}{\partial y^2} = \frac{y^2}{x} \frac{\partial z}{\partial x} + \frac{x^2}{y} \frac{\partial z}{\partial y}$ to canonical form and hence

solve it.

20. (A) Describe Monge's method. Solve r = t.

OR

(B) Define Riemann function. Prove that for the equation $\frac{\partial^2 u}{\partial x \partial y} + \frac{1}{4}u = 0$ the Riemann

function $(x, y; \alpha, \beta) = J_0 \sqrt{(x - \alpha)(y - \beta)}$ where $J_0(z)$ denote Bessel's function of the

first kind of order zero.

x 4 = 40)

(10