M. Sc. DEGREE END SEMESTER EXAMINATION APRIL 2017 SEMESTER - 2: MATHEMATICS COURSE: P2MATT09: PARTIAL DIFFERENTIAL EQUATIONS
(Supplementary for 2014 admission)
Time: Three Hours
Max. Marks: 75

PART A

Answer any FIVE questions; 2 marks each

1. Verify that the differential equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable.
2. Find the integral surface of the equation $(2 x y-1) p+\left(z-2 x^{2}\right) q=2(x-y z)$ which passes
through the line $x_{0}(s)=1, y_{0}(s)=0$ and $z_{0}(s)=s$.
3. Along every characteristic strip of the equation $F(x, y, z, p, q)=0$, the function $F(x, y, z, p, q)$ is a
constant.
4. Find a complete integral of the equation $\left(p^{2}+q^{2}\right) y=q z$.
5. Define hyperbolic, parabolic and elliptic equations. Give example of a parabolic equation.
6. Reduce the equation $u_{x x}+x^{2} u_{y y}=0$ to a canonical form.
7. Write the Monge's equations for the nonlinear equation $y^{2} r-2 y s+t=p+6 y$.
8. Solve the one dimensional diffusion equation $\frac{\partial^{2} z}{\partial x^{2}}=\frac{1}{k} \frac{\partial z}{\partial t}$ by separating the variables.

PART B

Answer any FIVE questions; 5 marks each
9. Find the surface which intersects the surfaces of the system $z(x+y)=$ $c(3 z+1)$
orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
10. Verify that the differential equation $\left(y^{2}+y z\right) d x+\left(x z+z^{2}\right) d y+\left(y^{2}-x y\right) d z=0$ is integrable and find its primitive.
11. Find a complete integral of the equation $p^{2} x+q^{2} y=z$ by Jacobi's method.
12. Show that a complete integral of $\left(u_{x}, u_{y}, u_{z}\right)=0$ is $u=a x+b y+c z+d$ where $f(a, b, c)=0$.

Hence find the complete integral of $u_{x}+u_{y}+u_{z}-u_{x} u_{y} u_{z}=0$.
13. Find the solution of the equation $\frac{\partial^{2} z}{\partial x^{2}}-\frac{\partial^{2} z}{\partial y^{2}}=x-y$
14. Reduce the equation $\frac{\partial^{2} u}{\partial x^{2}}=x^{2} \frac{\partial^{2} u}{\partial y^{2}}$ to canonical form.
15. Prove that for the equation $\frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{4} u=0$, the Riemann function is $v(x, y ; \alpha, \beta)$
=
$J_{0}\left(\sqrt{ }(x-\alpha)(y-\beta) \quad\right.$ where J_{0} denote the Bessel's function of the first kind of order zero.
16. Derive the condition that the surface $f(x, y, z)=c$ form a family of equipotential surfaces.

PART C

Answer either part (a) or part (b). Each carries 10 marks.
17. (A) Prove that the Pfaffian differential equation $\vec{X} . d \vec{r}=0$ is integrable if and only if \vec{X}.Curl $\vec{X}=0$.

OR

(B)Prove that if $u_{i}\left(x_{1}, x_{2}, \ldots, x_{n}, z\right)=c_{i} \quad(i=1,2,3, \ldots \ldots, n)$ are independent solutions of the equations $\frac{d x_{1}}{P_{1}}=\frac{d x_{2}}{P_{2}}=\cdots \cdot \frac{d x_{n}}{P_{n}}=\frac{d z}{R}$, then the relation $\varnothing\left(u_{1}, u_{2}, \ldots \ldots, u_{n}\right)=0$ in which the function \varnothing is
arbitrary, is a general solution of the linear partial differential equation

$$
P_{1} \frac{\partial z}{\partial x_{1}}+P_{2} \frac{\partial z}{\partial x_{2}}+P_{3} \frac{\partial z}{\partial x_{3}}+\cdots \ldots \ldots+P_{n} \frac{\partial z}{\partial x_{n}}=R .
$$

18. (A) Find the complete integral of the equation $p^{2} x+q y=z$ and derive the equation of the integral surface containing the line $y=1, x+z=0$ is a generator.

OR

(B) Describe Jacobi's method. Solve the

> equation
$z^{2}+z u_{z}-u_{x}^{2}-u_{y}^{2}=0 \quad$ by Jacobi's method.
19. (A) Solve the equation

$$
\frac{\partial^{2} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y}
$$

OR

(B)Reduce the equation $\mathrm{y} \frac{\partial^{2} z}{\partial x^{2}}-2 \mathrm{xy} \frac{\partial^{2} z}{\partial x \partial y}+\mathrm{x}^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{y^{2}}{x} \frac{\partial z}{\partial x}+\frac{x^{2}}{y} \frac{\partial z}{\partial y}$ to canonical form and hence
solve it.
20. (A) Describe Monge's method. Solve $\mathrm{r}=t$.
(B) Define Riemann function. Prove that for the equation $\frac{\partial^{2} u}{\partial x \partial y}+\frac{1}{4} u=0$ the Riemann
function $(x, y ; \alpha, \beta)=J_{0} \vee(x-\alpha)(y-\beta)$ where $J_{0}(z)$ denote Bessel's function of the
first kind of order zero.
$x 4=40$)

