M. Sc. DEGREE END SEMESTER EXAMINATION APRIL 2017

SEMESTER - 2: MATHEMATICS COURSE: P2MATT06: ABSTRACT ALGEBRA
(Supplementary for 2014 admission)
Time: Three Hours

PART A

Answer any five questions. Each question carries $\mathbf{2}$ marks.

1. State the fundamental theorem of finitely generated abelian groups.
2. In $Z_{n}[x]$, the equation $x^{2}-1=0$ has exactly two solutions. True? Justify.
3. Check whether 3 is a primitive $6^{\text {th }}$ root modulo 7 .
4. Define constructible numbers.
5. Are $\mathrm{Q}(\sqrt{ } 2)$ and $\mathrm{Q}(3+\sqrt{ } 2)$ two different extensions of the field Q ?
6. Define Frobenius automorphism
7. Is the Galois field GF (2^{8}) perfect? Justify.
8. Define the Galios group.

$$
(2 \times 5=10)
$$

PART B

Answer any five questions. Each question carries 5 marks.
9. Define the $p^{\text {th }}$ Cyclotomic polynomial. Check whether it is irreducible over Q.
10. State and prove the Eisenstein Criterion.
11. Let F be a field and α be algebraic over F. Let the degree of irr (α, F) be $n \geq 1$. Prove that every
element β of $F(\alpha)$ can be uniquely expressed as $\beta=b_{0}+b_{1} \alpha+\ldots+b_{n-1} \alpha^{n-1}$, $b_{i} \in F$.
12. Prove that every finite extension field of a finite field is a simple extension.
13. Prove that complex zeros of polynomials with real coefficients occur in conjugate pairs.
14. Let p be a prime number. Let G be a finite group and let p divide |G|. Prove that G has an
element of order p.
15. If $f(x)$ is irreducible in $\mathrm{F}[x]$, prove that all zeros of $f(x)$ have same multiplicity in the closure of F.
16.State and prove the Primitive Element Theorem.

Answer either Part I or Part II of each question. Each question carries $\mathbf{1 0}$ marks.
17. (I) (a) Define the direct product groups. Introduce a group structure in the direct product.
(b) State and prove the necessary and sufficient condition for $Z_{m} \times Z_{n}$ to be a cyclic group.
(II) Let F be a subfield of a field E and let $\alpha \in \mathrm{E}$. Define $\emptyset_{\alpha}: \mathrm{F}[x] \rightarrow \mathrm{E}$ by $\emptyset_{\alpha}\left(\mathrm{a}_{0}+\right.$ $\left.a_{1} x+\ldots+a_{n} x^{n}\right)=$
$a_{0}+a_{1} \alpha+\ldots+a_{n} \alpha^{n}$ Prove that \emptyset_{α} is a homomorphism. Find all the zeros
in Z_{5} of

$$
2 x^{219}+3 x^{74}+2 x^{57}+3 x^{44} .
$$

18. (I) Prove that every field has an algebraic closure.
(II) Construct the Galois field $\operatorname{GF}\left(2^{3}\right)$ containing 8 elements. Find the multiplicative inverses of any three nonzero elements of $\mathrm{GF}\left(2^{3}\right)$.
19. (I) (a) Show that every group of order 255 is abelian and cyclic.
(b) Show that no group of order 48 is simple.
(II) (a) Let E be a finite extension of a field F. Show that the number extensions of an isomorphism of F onto a field F^{\prime} to an iso-morphism of E onto a subfield of of \dot{F}^{\prime} is finite and is completely determined by the two fields E and $F .1$
(b) Express $\mathbb{Q}(\sqrt{2}, \sqrt{3})$ as a simple extension.
20. (I) (a) Prove that every field of characteristic zero is perfect.
(b) Let E be a finite separable extension of a field F. Prove that $E=F(\alpha)$ for some α in E.
(II) (a) Prove that the Galois field GF(p^{n}) is perfect.
(b) Let E be a splitting field over a field F. Prove that every irreducible polynomial in $\mathrm{F}[x]$
has a zero in E then all its zeros are in E .
$(10 \times 4=40)$
