eg. No.			Name	:		Q. Co	de:	P130
	M SC DEC	_			EXAMIN PHYSICS	ATION 20	14 -1	L5
	COLLE	اد RSE: P1P						
Tim	e: 3 Hours	COL. FIF	111105	- LLLC	IKODII		x. Ma	rks: 75
						•		
			Pa	rt A				
		Αı	nswer al l		ns.			
1.Wh	nich of these s			•		static magn	etic f	äeld?
	. It is solenoid				conserva	_		
С	. It has no sink	s or sourc	ce	d. They	are alwa	ays closed		
	e flux through					•	wher	re t is ir
	conds is		-	· ·	- \-	,,		
	.1V	b1V	c. 4m	ıV	d. 0	.4V		
_	nich is the mai	n factor fo	or detern	ninina w	hether a	medium is	free s	space.
	sless dielectri			_				
	. Attenuation	-	,	_		utive param	eters	(σ. ε. μ
	. Loss Tangen				ection Co			(- , - ,
	e dominant m							
	. TE ₁₁	b. TM ₁₁		c. TE ₀₁	,	d. TE ₁₀		
	Quarter wave		antenna		ing in ai		encv	1MHz
	ist have an ov	-		а оролас	9	. at aequ	cc,	
	a. 300m	_		c. 75m		d. 100m		
						G.1 = G.1.1	(5	x 1 = 5
			Part B	(Short	Answer)	•	()	,, ,
		Δno		-	the follo			
6 .Fx	plain Maxwell'		_			9		
	stinguish betw			ne and I	orentz G	auge		
	nat is meant b		-			_		
	nat is Radiation	-	-	1000 4119	, c 0, a 1,	.cara		
10.	Explain the			ain of an	antenna			
11.	•					a transmiss	sion li	ine?
12.		-		-		fficients? H		
	ated?	rterrection	i ana i		51011 606	merenes. Tr		ney are
13.		spects a w	aveguide	e is diffe	rent from	n a transmis	sion I	line?
		Pecce a W	ga.a.	5 46	. 5.1.2 11 011			2 = 10)
							(5 /	

Part C

Answer any three of the following

14. For a conducting medium obeying Ohm's law, $J=\sigma E$, show that $\frac{\partial \rho}{\partial t} + \frac{\sigma \rho}{\varepsilon} = 0$. Also prove that if initially there is charge density at any point

inside the conducting medium, then the charge density at a later time is

given by $\rho = \rho_0 \exp\{-\sigma/\varepsilon\}t$, where σ is the conductivity and σ is the relaxation time.

- **15.** The magnetic field of the TE₁₁ mode in a rectangular waveguide of dimensions a x b is given by $H_z = H_0 \cos(0.3\pi x)\cos(0.4\pi y)$, where x and y are in cm. Determine the waveguide dimensions and the cutoff frequency.
- 16. Find the skin depth δ and the wave velocity at a frequency of 1.6 MHz in Aluminium, where $\sigma=$ 38.2 MS/m and $\mu_r=1$
- 17. A magnetic field strength of 5μ A/m is required at a point on $\theta = \pi/2$ which is 2 Km from an antenna in air. Neglecting ohmic loss, how much power must an antenna transmit if it is a half wave dipole?
- **18.** Show that the velocity of propagation of an electromagnetic wave

along a parallel plate transmission line $v_p = \frac{1}{\sqrt{LC}}$

 $(3 \times 4 = 12)$

Part D

Answer all questions. Each question carries 12 Marks

19. (a)Discuss with relevant theory the reflection and transmission of a plane electromagnetic wave in the z-direction, incident normally on a boundary in x-y plane between two linear media with indices of refraction n_1 and n_2 .

OR

- (b)Obtain expressions for the energy and momentum of a plane electromagnetic wave and derive the relation between them.
- 20. (a)Write a note on: i) Current density 4-vector
 - ii) 4-vector potential
 - iii) Electromagnetic field tensor

OR

- (b) Derive the Maxwell's equations in the Tensor form.
- 21. (a) Derive an expression for the energy radiated by an oscillating electric dipole.

- (b) Assuming Lienard-Wiechert potentials, find the field vectors of an accelerated point charge.
- 22. (a) Discuss the propagation of TE waves in a rectangular waveguide and derive the expression for the cut-off frequency.

OR

(b)Derive the general transmission line equation for a two conductor parallel transmission line. $(4 \times 12 = 48)$