Reg. No
Name:
Q. Code: P150

M COM DEGREE END SEMESTER EXAMINATION 2014-15 SEMESTER -1: MATHEMATICS COURSE: P1MATT05 - COMPLEX ANALYSIS - 1

Time: 3 Hours
Max. Marks: 75

Part A

Answer any 5 questions, each carries 2 marks.

1. Show that an analytic function defined in a region Ω reduces to a constant if its modulus is constant.
2. Find the fixed points and normal form of the transformation $w=\frac{Z}{2-z}$
3. Show that $\left|\int_{a}^{b} f(t) d t\right| \leq \int_{a}^{b} i f(t) \mid d t$ holds for arbitrary complex valued function $f:[a i ¿ 1 b] \rightarrow C i$
4. Evaluate $\int_{y} x d z$ where y is the directed line segment from 0 to $1+\mathrm{i}$
5. Show that zeros of an analytic function defined on a region are isolated.
6. Define meromorphic function. Give an example.
7. Show that any harmonic function which depends only on r must be of the form $a \log r+b$.
8. Show that $P_{u+v}=P_{u}+P_{v}$ (5 $\times 2=10$)

Part B

Answer any 5 questions, each carries 5 marks.
9. Define cross ratio. Prove that if $z_{1}, z_{2}, z_{3}, z_{4}$ are distinct points in the extended plane and T any linear transformation then $\left(Z_{1} \mathrm{Tz}_{2} \mathrm{Tz}_{3} T z_{4}\right)=$ $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$.
10. Discuss the transformation $\omega=z^{2}$
11. State and prove cauchy's integral formula.
12. Evaluate $\int_{|z|=\rho}|z-a|^{-4} \vee d z \vee i b,|a| \neq \rho$
13. Show that an analytic function comes arbitrarily close to any complex value in the neighbourhood of an essential singularity.
14. Let z_{j} be the zeros of a function $f(z)$ which is analytic in a disk Δ and does not vanish identically, each zero being counted as many times as its order indicates. For any closed curve γ in Δ which does not pass through zero $\sum_{j} n(\gamma, z i i j) i=\frac{1}{2 \pi i} \int_{\gamma} \frac{f^{\prime}(z)}{f(z)} d z$ where the sum has only a finite number of terms not equal to zero. Prove.
15. Prove that all the roots of $z^{7}-5 z^{3}+12=0$ lie between the circles $|z|=1$ and $|z|$ $=2$
16. State and prove cauchy's residue theorem.

Part C

Answer either (a) or (b) of the following four questions.

17. a) prove that $\left(z_{1}, z_{2}, z_{3}, z_{4}\right)$ is real if and only if the four points lie on a circle or on a straight line.

OR
b) Find a linear transformation which carries the circle $|z|=2$ into $|z+1|=1$, the point -2 into the origin and the origin to i

18 a) State and prove cauchy's theorem for a rectangle
OR
b) (1) Let $f(z)$ be analytic in the region Δ^{\prime} obtained by omitting a finite number of points ζ_{j} from an open disk Δ. If $f(z)$ satisfies the condition $\lim _{z \rightarrow \zeta_{i}}\left(z-\zeta_{j}\right) f(z)=0$ for all j then $\int_{\gamma} f(z) d z=0$ holds for any closed curve γ in Δ^{\prime} . Prove.
(2) Show that if the piecewise differentiable closed curve y does not pass through the point a then the value of the integral $\int_{Y} \frac{d z}{z-a}$ is a multiple of $2 \pi i$
19. a) State and prove Taylor's theorem

OR
b) Prove that if $\mathrm{pdx}+\mathrm{q} \mathrm{dy}$ is locally exact in Ω then $\int_{V} p d x+q d y=0$ for every cycle γ homologus to zero in Ω.
20. a) If u_{1} and u_{2} are harmonic in a region Ω then $\int_{V} u_{1} * d u_{2}-u_{2} * d u_{1}=0$ for every cycle γ which is homologus to zero in Ω. Prove.

OR

b) Using residue theorem prove that $\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}$

