Reg. No..... Name:

O. Code: P103

M SC DEGREE END SEMESTER EXAMINATION 2014 -15 SEMESTER -1: MATHEMATICS

COURSE CODE: P1MATT01:TITLE:LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 75

Part A

Answer Any FiveEach Question has 2 Marks

- 1. Let **V** be the set of pairs (x, y) of real numbers and let **F** be the field of real numbers.
 - Define $(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, 0)$

 $c(x_1, x_2) = (cx_1, 0)$. Is **V**, with these operations a vector space over **F**?

- 2. Define $T: \mathbb{R}^2 \to \mathbb{R}^2$ by T(x, y) = (1+x, y). Is **T** a linear transformation?
- 3. Define a non-singular linear transformation. Show that $T: \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x, y) = (x + y, y) is non-singular.
- 4. Show that a linear transformation $T: \mathbb{R}^n \to \mathbb{R}^n$ is one-to-one if and only if it is onto.
- 5. Let **K** be a commutative ring with identity , and let **D** be a 2-linear function with the property that

D(A) = 0 for all 2 × 2 matrices **A** over **K** having equal rows. Show that **D** is alternating.

- 6. Let **T** be a linear operator on a finite dimensional vector space **V** and let **c** be a scalar. Show that the following are equivalent.
 - (i) **c** is a characteristic value of **T**.
 - (ii) The operator (**T-cl**) is invertible, where **I** is the identity operator on **V**.
- 7. Let **A** be an $n \times n$ triangular matrix over the field **F**. Prove that the characteristic values of **A** are the diagonal entries of **A**.
- 8. Define minimal polynomial for a linear operator **T** on a finite dimensional vector space **V**. Explain three properties which characterize minimal polynomial.

Part B

Answer **any Five** Each Question has 5 Marks

- 9. Let W_1 and W_2 be two subspaces of the vector space V. Show that $W_1 \cup W_2$ is a subspace of **V** if and only if one is contained in the other.
- 10. Let V and W be finite dimensional vector spaces over the field F. Prove that V and **W** are isomorphic if and only if $\dim \mathbf{V} = \dim \mathbf{W}$.
- 11. If **f** and **g** are linear functionals on a vector space **V**, then show that $\mathbf{g} = \mathbf{cf}$ for some scalar **c** if and only if the null space of **g** contains the null space of **f**.
- 12. Let $T: \mathbb{R}^2 \to \mathbb{R}^2$ be defined by T(x, y) = (-y, x).
 - (i) What is the matrix of **T** in the standard ordered basis for R^2 .
 - (ii) What is the matrix of **T** in the ordered basis $B = \{(1,2), (1,-1)\}$.
- 13. Let **K** be a commutative ring with identity, and let **A** and **B** be $n \times n$ matrices over **K**. If det (A) denotes the determinant of A, show that det (AB) = det (A).det (B).
- 14. Let **A** and **B** be*n* × *n*matrices over the field **F**. Prove that if (**I-AB**) is invertible, then (I-BA) is also invertible and $(I-BA)^{-1} = I + B (I-AB)^{-1}A$.

- 15. Let **T** be a linear operator on the *n*-dimensional vector space **V**, and suppose that **T** has *n* distinct characteristic values. Prove that **T** is diagonalizable.
- 16. Let **T** be a linear operator on the *n*-dimensional vector space **V**. Show that the characteristic and minimal polynomials for **T** have the same roots, except for multiplicities.

Part C

Answer (a) or (b) from Each Questions. Each Question has 10 Marks

17. (a) Let ${\bf V}$ be an $\it n$ -dimensional vector space over the field ${\bf F},$ and let ${\bf B_1}$ and ${\bf B_2}$ be two ordered

bases of **V**. Show that there exists unique, invertible, $n \times n$ matrix **P** with entries in **F** such that

- (i) $[x]_{B_1} = P[x]_{B_2}$
- (ii) $[x]_{B_0} = P^{-1}[x]_{B_0}$
- (b)(i) Let **V** be the set of all real numbers. Regard **V** as a vector space over the field of rational numbers, with usual operations. Prove that **V** is not finite dimensional.

(ii) Let ${\bf V}$ be the vector space of all 2×2 matrices over the field ${\bf F}.$ Prove that ${\bf V}$ has dimension

4 by exhibiting a basis for **V**.

- 18. (a) Let V be a finite dimensional vector space over the field F, and let {x₁,x₂,...x_n} be an ordered basis for V. Let W be a vector space over the same field F and {y₁, y₂,...y_n} be any set of vectors in W. Then show that there is precisely one linear transformation T from V into W such that T(x_j)=y_j for j=1,2,...n.
 (b) Let V be the vector space of all polynomial functions f: R→ R of the form f(x)=a+bx+cx²+dx³; a, b, c, d real numbers. Define the map D: V→ V by D (a+bx+cx²+dx³) =b+2cx+3dx². Prove that D is a linear transformation and find the matrix of D with respect to the ordered basis B= { f₀, f₁, f₂, f₃} where f_i(x)=x^j, j=0,1,2,3.
- 19. (a) Let A be ann×nmatrix over the field F. Then show that A is invertible over F if and only if det(A)≠0. When A is invertible, show that A⁻¹=det(A)⁻¹.adj(A), where adj(A) is the adjoint of A.

(b) (i)For an $n \times n$ matrix **A** with complex entries, if **A**^tdenotes the transpose of **A** then prove that **det(A**^t) = **det(A)**.

- (ii) If \mathbf{A} is a skew symmetric $n \times n$ matrix with complex entries (that is $\mathbf{A}^t = -\mathbf{A}$) and n is odd, prove that det(\mathbf{A})=0.
- (iii) If **A** is an orthogonal $n \times n$ matrix with complex entries (that is **AA**^t=I), prove that det(**A**)=±1.
- 20. (a) Let **T** be a linear operator on the finite dimensional vector space **V**. Let c_1 , c_2 , . . c_k be the distinct characteristic values of **T** and let W_i be the characteristic space associated with the characteristic value c_i . If $W = W_1 + W_2 + ... + W_k$ then show that

dimW=dim W_1 +dim W_2 +...+dim W_k .

(b)(i) If **E** is a projection on a vector space **V** with range **R** and null space **N**, show that $V = R \oplus N$.

- (ii) Show that a vector x is in the range **R** of **E** if and only if E(x)=x.
- (iii) Find a projection **E** which projects \mathbf{R}^2 on to the subspace spanned by (1,-1) along the subspace spanned by (1, 2).
