\qquad

M SC DEGREE END SEMESTER EXAMINATION 2014-15 SEMESTER -1: MATHEMATICS COURSE CODE: P1MATT01:TITLE:LINEAR ALGEBRA

Time: 3 Hours

Max. Marks: 75

Part A
 Answer Any FiveEach Question has 2 Marks

1. Let \mathbf{V} be the set of pairs (x, y) of real numbers and let \mathbf{F} be the field of real numbers.

$$
\begin{aligned}
& \text { Define }\left(x_{1}, x_{2}\right)+\left(y_{1}, y_{2}\right)=\left(x_{1}+y_{1}, 0\right) \\
& c\left(x_{1}, x_{2}\right)=\left(c x_{1}, 0\right) . \text { Is } \mathbf{V} \text {, with these operations a vector space over } \mathbf{F} ?
\end{aligned}
$$

2. Define $T: R^{2} \rightarrow R^{2}$ by $T(x, y)=(1+x, y)$. Is \mathbf{T} a linear transformation?
3. Define a non-singular linear transformation. Show that $T: R^{2} \rightarrow R^{2}$ defined by $T(x, y)=(x+y, y)$ is non-singular.
4. Show that a linear transformation $T: R^{n} \rightarrow R^{n}$ is one-to-one if and only if it is onto.
5. Let \mathbf{K} be a commutative ring with identity, and let \mathbf{D} be a 2-linear function with the property that
$D(A)=0$ for all 2×2 matrices \mathbf{A} over \mathbf{K} having equal rows. Show that \mathbf{D} is alternating.
6. Let \mathbf{T} be a linear operator on a finite dimensional vector space \mathbf{V} and let \mathbf{c} be a scalar. Show that the following are equivalent.
(i) \mathbf{c} is a characteristic value of \mathbf{T}.
(ii) The operator ($\mathbf{T}-\mathbf{c l}$) is invertible, where \mathbf{I} is the identity operator on \mathbf{V}.
7. Let \mathbf{A} be an $n \times n$ triangular matrix over the field \mathbf{F}. Prove that the characteristic values of \mathbf{A} are the diagonal entries of \mathbf{A}.
8. Define minimal polynomial for a linear operator \mathbf{T} on a finite dimensional vector space V. Explain three properties which characterize minimal polynomial.

Part B

Answer any Five Each Question has 5 Marks
9. Let \mathbf{W}_{1} and \mathbf{W}_{2} be two subspaces of the vector space \mathbf{V}. Show that $\mathbf{W}_{1} \cup \mathbf{W}_{\mathbf{2}}$ is a subspace of \mathbf{V} if and only if one is contained in the other.
10. Let \mathbf{V} and \mathbf{W} be finite dimensional vector spaces over the field \mathbf{F}. Prove that \mathbf{V} and \mathbf{W} are isomorphic if and only if $\operatorname{dim} \mathbf{V}=\operatorname{dim} \mathbf{W}$.
11. If \mathbf{f} and \mathbf{g} are linear functionals on a vector space \mathbf{V}, then show that $\mathbf{g}=\mathbf{c f f o r}$ some scalar \mathbf{c} if and only if the null space of \mathbf{g} contains the null space of \mathbf{f}.
12. Let $T: R^{2} \rightarrow R^{2}$ be defined by $T(x, y)=(-y, x)$.
(i) What is the matrix of \mathbf{T} in the standard ordered basis for R^{2}.
(ii) What is the matrix of \mathbf{T} in the ordered basis $B=\{(1,2),(1,-1)\}$.
13. Let \mathbf{K} be a commutative ring with identity, and let \mathbf{A} and \mathbf{B} ben $\times n$ matrices over \mathbf{K}. If det (\mathbf{A}) denotes the determinant of \mathbf{A}, show that $\operatorname{det}(\mathbf{A B})=\operatorname{det}(\mathbf{A}) \cdot \operatorname{det}(\mathbf{B})$.
14. Let \mathbf{A} and \mathbf{B} ben $\times n$ matrices over the field \mathbf{F}. Prove that if (I-AB) is invertible, then $(\mathbf{I}-\mathbf{B A})$ is also invertible and $(\mathbf{I}-\mathbf{B A})^{-1}=\mathbf{I}+\mathbf{B}(\mathbf{I}-\mathbf{A B})^{-1} \mathbf{A}$.
15. Let \mathbf{T} be a linear operator on the n-dimensional vector space \mathbf{V}, and suppose that \mathbf{T} has n distinct characteristic values. Prove that \mathbf{T} is diagonalizable.
16. Let \mathbf{T} be a linear operator on the n-dimensional vector space V. Show that the characteristic and minimal polynomials for \mathbf{T} have the same roots, except for multiplicities.

Part C

Answer (a) or (b) from Each Questions. Each Question has 10 Marks
17. (a) Let \mathbf{V} be an n-dimensional vector space over the field \mathbf{F}, and let \mathbf{B}_{1} and $\mathbf{B}_{\mathbf{2}}$ be two ordered
bases of \mathbf{V}. Show that there exists unique, invertible, $n \times n$ matrix \mathbf{P} with entries in \mathbf{F} suchthat
(i) $[x]_{B_{1}}=P[x]_{B_{2}}$
(ii) $[x]_{B_{2}}=P^{-1}[x]_{B_{1}}$
(b)(i) Let \mathbf{V} be the set of all real numbers. Regard \mathbf{V} as a vector space over the field of rational numbers, with usual operations. Prove that \mathbf{V} is not finite dimensional.
(ii) Let \mathbf{V} be the vector space of all 2×2 matrices over the field \mathbf{F}. Prove that \mathbf{V} has dimension
4 by exhibiting a basis for \mathbf{V}.
18. (a) Let \mathbf{V} be a finite dimensional vector space over the field \mathbf{F}, and let $\left\{x_{1}, x_{2}, \ldots x_{n}\right\}$ be an ordered basis for \mathbf{V}. Let \mathbf{W} be a vector space over the same field \mathbf{F} and $\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ be any set of vectors in \mathbf{W}. Then show that there is precisely one linear transformation \mathbf{T} from \mathbf{V} into \mathbf{W} such that $T\left(x_{j}\right)=y_{j}$ for $j=1,2, \ldots n$.
(b) Let \mathbf{V} be the vector space of all polynomial functions $\mathbf{f}: \mathbf{R} \rightarrow \mathbf{R}$ of the form $f(x)=a+b x+c x^{2}+d x^{3} ; \mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}$ real numbers. Define the map $\mathbf{D}: \mathbf{V} \rightarrow \mathbf{V}$ by $\mathbf{D}\left(a+b x+c x^{2}+d x^{3}\right)=b+2 c x+3 d x^{2}$. Prove that \mathbf{D} is a linear transformation and find the matrix of \mathbf{D} with respect to the ordered basis $\mathbf{B}=\left\{f_{0}, f_{1}, f_{2}, f_{3}\right\}$ where $f_{j}(x)=x^{j}, j=0,1,2,3$.
19. (a) Let \mathbf{A} be ann $\times n$ matrix over the field \mathbf{F}. Then show that \mathbf{A} is invertible over \mathbf{F} if and only if $\operatorname{det}(\mathbf{A}) \neq 0$. When \mathbf{A} is invertible, show that $\mathbf{A}^{-1}=\boldsymbol{\operatorname { d e t }}(\mathbf{A})^{-1} \cdot \operatorname{adj}(\mathbf{A})$, where $\operatorname{adj}(\mathbf{A})$ is the adjoint of \mathbf{A}.
(b) (i)For an $n \times n$ matrix \mathbf{A} with complex entries, if \mathbf{A}^{t} denotes the transpose of \mathbf{A} then prove that $\operatorname{det}\left(\mathbf{A}^{t}\right)=\operatorname{det}(\mathbf{A})$.
(ii) If \mathbf{A} is a skew symmetric $n \times n$ matrix with complex entries (that is $\mathbf{A}^{\mathrm{t}}=\mathbf{-} \mathbf{A}$) and n is odd, prove that $\operatorname{det}(\mathbf{A})=0$.
(iii)If \mathbf{A} is an orthogonal $n \times n$ matrix with complex entries (that is $\mathbf{A A}^{\mathbf{t}}=\mathbf{I}$), prove that $\operatorname{det}(\mathbf{A})= \pm 1$.
20. (a) Let \mathbf{T} be a linear operator on the finite dimensional vector space \mathbf{V}. Let $\mathbf{c}_{\mathbf{1}}, \mathbf{c}_{\mathbf{2}}$,
.. $\mathbf{c}_{\mathbf{k}}$ be the distinct characteristic values of \mathbf{T} and let $\mathbf{W}_{\mathbf{i}}$ be the characteristic space associated with the characteristic value \mathbf{c}_{i}. If $\mathbf{W}=\mathbf{W}_{\mathbf{1}}+\mathbf{W}_{\mathbf{2}}+\ldots+\mathbf{W}_{\mathrm{k}}$ then show that
$\operatorname{dim} \mathbf{W}=\operatorname{dim} \mathbf{W}_{\mathbf{1}}+\operatorname{dim} \mathbf{W}_{\mathbf{2}}+\ldots+\operatorname{dim} \mathbf{W}_{\mathbf{k}}$.
(b)(i) If \mathbf{E} is a projection on a vector space \mathbf{V} with range \mathbf{R} and null space \mathbf{N}, show that $\quad V=R \oplus N$.
(ii) Show that a vector x is in the range \mathbf{R} of \mathbf{E} if and only if $E(x)=x$.
(iii) Find a projection \mathbf{E} which projects \mathbf{R}^{2} on to the subspace spanned by $(1,-1)$ along the subspace spanned by $(1,2)$.

