M. A. DEGREE END SEMESTER EXAMINATION - OCTOBER 2019 SEMESTER 1: ECONOMICS (CORE COURSE) COURSE: 16P1ECOT05 - QUANTITATIVE TOOLS FOR ECONOMIC ANALYSIS (For Regular - 2019 Admission and Supplementary 2018 / 2017 / 2016 Admissions)

Time: Three Hours
Max Mark: 75

PART - A

Answer any eight questions. Each question carries $\mathbf{2}$ marks

1. Define minor of a matrix with the help of an example.
2. What do you mean by rank of a matrix?
3. What do you mean by a inverse of a matrix?
4. Mention the properties of Cobb-Douglas production function.
5. Define marginal elasticity of demand.
6. What are the conditions for a function $f(x, y)$ to be a maximum?
7. How will you obtain the total utility function from the marginal utility function?
8. What is cost function?
9. What is Simpson's one-third rule?
10. How will you obtain an optimum solution of a linear programming using graphical method?
11. When will you consider dual of LPP?
12. Mention the objectives of input/ output analysis.

PART - B

Answer any Seven questions. Each question carries 5marks
13. If $A=\left(\begin{array}{ll}1 & 2 \\ 4 & 1\end{array}\right)$ and $B=\left(\begin{array}{rr}2 & 4 \\ 5 & -1\end{array}\right)$, then verify whether $A^{2}-B^{2}=(A-B)(A+B)$.
14. If $\left|\begin{array}{ccc}-3 & -6 & 1 \\ 5 & x & -2 \\ 2 & -3 & 5\end{array}\right|=-7$ then find the value of x.
15. Explain the significance of Euler's theorem with the help of an example of a homogeneous production function.
16. The revenue function of a firm is given by $f(x, y)=4 x y+x y^{2}$. Find the marginal revenue functions and also show that $f_{x y}=f_{y x}$
17. Obtain marginal rate of substitution if the utility function is $U(x, y)=5 x y^{2}-2 x y+2 y^{3}$.
18. Maximise the profit if the profit function of a firm is $P(x)=x^{2}+x y+2 y^{2}-800$ subject to the Production quota $x+y=100$
19. Integrate the following functions
$\begin{array}{ll}\text { (i) }(x+1)^{3} & \text { (ii) } x \log x\end{array}$
20. Explain trpezoidal rule.
21. Explain how will you formulate a linear programming problem?
22. Describe input/ output (I/O) analysis.

PART - C
Answer any two questions. Each question carries $\mathbf{1 2}$ marks
23. Solve the following system of equations using Cramer's rule.
$3 x-y+2 z=13$
$2 x+y-z=3$
$x+3 y-5 z=-8$
24. Explain the various applications of partial derivatives in economics.
25. The total cost of x units is y rupees, where $y=900 x-30 x^{2}+x^{3}$ and all units made are sold at Rs. 10 per unit. At what two points does marginal cost equal marginal revenue?
26. A manufacturer makes two types of toys A and B. Three machine are needed for this purpose and the time (in minutes) required for each toy on the machines is given below:

Types of Toys	Machines		
	I	II	III
A	20	10	10
B	10	20	30

The machines I, II and III are available for a maximum of 180 minutes, 120 minutes and 150 minutes respectively. The profit on each toy of type A is Rs 50 , and that of type B is Rs 60 . Formulate the above problem as a L.P.P and solve it graphically to maximize profit.
$(12 \times 2=24)$

